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Abstract

Background. Childhood maltreatment (CM) plays an important
role in the development of major depressive disorder (MDD).
The aim of this study was to examine whether CM severity
and type are associated with MDD-related brain alterations,
and how they interact with sex and age.
Methods. Within the ENIGMA-MDD network, severity and
subtypes of CM using the Childhood Trauma Questionnaire
were assessed and structural magnetic resonance imaging data
from patients with MDD and healthy controls were analyzed
in a mega-analysis comprising a total of 3872 participants
aged between 13 and 89 years. Cortical thickness and surface
area were extracted at each site using FreeSurfer.
Results. CM severity was associated with reduced cortical thick-
ness in the banks of the superior temporal sulcus and supramar-
ginal gyrus as well as with reduced surface area of the middle
temporal lobe. Participants reporting both childhood neglect
and abuse had a lower cortical thickness in the inferior parietal
lobe, middle temporal lobe, and precuneus compared to partici-
pants not exposed to CM. In males only, regardless of diagnosis,
CM severity was associated with the higher cortical thickness of
the rostral anterior cingulate cortex. Finally, a significant inter-
action between CM and age in predicting thickness was seen
across several prefrontal, temporal, and temporo-parietal
regions.
Conclusions. Severity and type of CM may impact cortical
thickness and surface area. Importantly, CM may influence
age-dependent brain maturation, particularly in regions related
to the default mode network, perception, and theory of mind.

Introduction

According to the Centers for Disease Control and Prevention,
childhood maltreatment (CM) is defined as ‘any act or series of
acts of commission or omission by a parent or other caregiver
that results in harm, potential for harm, or threat of harm to a
child’ (Leeb et al., 2008). CM may be physical, sexual or emotional
and may result in inadequate environmental input (e.g. depriv-
ation or neglect) or excessive harmful input (Sheridan and
McLaughlin, 2014). About one-quarter of all adults have encoun-
tered CM in their life (Fu et al., 2018) and this statistic may even
be higher as a history of childhood adversity is likely under-
reported. In fact, a recent meta-analysis has found that over half
of children globally had experienced violence in just the past
year alone (Hillis et al., 2016). Given the prevalence of CM, this

is especially alarming as CM is strongly associated with a wide
range of adverse consequences, not only causing suffering in
the immediate aftermath, but also long-term detrimental effects
to mental and physical health. For example, children with a his-
tory of CM are more prone to smoking and obesity, as well as
of being perpetrators and victims of violence (WHO, 2016,
November). Also, both prospective and retrospective reports of
maltreatment were found to be associated with adult psychiatric
disorders in a recent study, though the strongest associations
were found when maltreatment was retrospectively self-reported
(Newbury et al., 2018). In that study, it was also shown that
young adults who recall being maltreated have a particularly ele-
vated risk for psychopathology. Notably, CM is one of the stron-
gest factors in the development of major depressive disorder
(MDD) (Bernet and Stein, 1999), the leading cause of disability
worldwide according to the World Health Organization, with
increasing rates over the past decade (WHO, 2016, November).

As both CM and MDD have a high incidence in the general
population, the interplay between these two phenomena is
important to investigate, both for prevention and treatment.
Depressed patients with CM, for example, respond more poorly
to antidepressant treatment than those without CM (Nanni
et al., 2012). CM and MDD may be causally linked, as MDD is
a disorder characterized by pathological responses to stress
(Frodl et al., 2008). In experimental studies, chronic social stress
induces glucocorticoid-mediated pyramidal dendrite retraction
in the hippocampus and changes in dendrite arborization in the
prefrontal cortex (PFC) (Woolley et al., 1990; Magarinos et al.,
1996; Wellman, 2001; Kole et al., 2004), which may be associated
with the behavioral manifestations of stress-related disorders like
MDD (Macqueen and Frodl, 2010). Therefore, based on the
extant literature, one hypothesis is that CM in humans acts as a
chronic stressor contributing to changes of brain structure and
function, which in turn may increase vulnerability to psychiatric
disorders such as MDD. Supporting this theory, CM was found
to be associated with reduced brain volumes in the amygdala,
PFC, and cerebellum (Frodl et al., 2010; Edmiston et al., 2011;
Dannlowski et al., 2012; Teicher et al., 2016) – regions also
reported to be affected in MDD (Wise et al., 2016; Schmaal
et al., 2017). A correlation between CM and medial prefrontal
gray matter volume was also detected irrespective of diagnosis
with MDD or anxiety (van Harmelen et al., 2010). Finally, in
an ENIGMA-MDD mega-analysis focusing on subcortical struc-
tures, CM was found to be associated with lower caudate volume
in females. Those alterations were more strongly associated with
emotional and physical neglect than with other forms of CM
(Frodl et al., 2017).

Research in animals and humans also suggests important dis-
tinctions between types of CM on brain structure. Specifically,
researchers theorized that experiences characterized by depriv-
ation (e.g. emotional and physical neglect) compared with experi-
ences characterized by threat (e.g. emotional abuse and physical
violence) lead to different effects on neuronal development
(McLaughlin et al., 2014a). A community study in 287 adoles-
cents showed that exposure to threat and violence was associated
with automatic emotion regulation deficits, but not cognitive con-
trol disturbances. In contrast, exposure to poverty was associated
with worse cognitive control, but no deficits automatic emotion
regulation. On the other hand, both violence and poverty predicted
poor inhibition in an emotional context (Lambert et al., 2017).
Interestingly, children exposed to severe deprivation in the form
of institutional rearing exhibited widespread cortical thinning in

2 Leonardo Tozzi et al.

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127



the superior and inferior parietal cortex (McLaughlin et al., 2014b),
and children exposed to neglect often have deficits in language abil-
ities (Farah et al., 2006). Individuals with a history of deprivation
showed smaller gray matter volumes compared with individuals
with a history of abuse in the fusiform gyrus and the middle occipi-
tal gyrus (Everaerd et al., 2016). Therefore, exploring effects from
different types of CM on brain structure was an important goal
of the current study.

In this mega-analysis, we first aimed to investigate the associ-
ation between CM severity and cortical brain structure in MDD
patients and healthy subjects. We hypothesized that more severe
CM would be related to lower cortical thickness and surface
area, especially of the OFC, ACC, medial PFC, and insula –
regions affected in adult MDD (Fischl et al., 2002) and involved
in emotion regulation (Desikan et al., 2006). We also hypothe-
sized that MDD patients with a more severe history of CM
would show smaller cortical brain measures than healthy controls
(HC) with a similar history of CM. Prior studies detected effects
of CM on dorsomedial PFC volume irrespective of diagnosis, but
did not fully consider the severity of CM. Besides severity, we also
investigated the relationship between different types of CM and
brain structure. Furthermore, we hypothesized changes to be
more prominent in females than males (Frodl et al., 2017) and
thus investigated the interactions between sex and CM on brain
structure. Finally, given the large sample size and wide age
range, we aimed to explore the interactive effects of CM with
age on brain structure.

Methods and materials

Samples

In the current study, 12 international sites participating in the
ENIGMA MDD Workgroup with information on CM agreed to
participate in the Childhood Adversity Subgroup. Detailed demo-
graphics and clinical characteristics for each sample may be found
in eTables 1 and 2. Most studies used SCID-1, CIDI, or another
form of a standardized interview (eTable 3). Exclusion criteria
for study enrollment are given in eTable 3. In total, we analyzed
data from 3872 participants: 1284 patients with a lifetime history
of MDD and 2588 HC. All participating sites obtained approval
from local institutional review boards and ethics committees. In
addition, this mega-analysis was approved by the ethics board
of the medical faculty of the Otto von Guericke University
Magdeburg, Germany. All study participants provided written
consent at their local site. In the case of adolescent participants,
parent/legal guardian provided written consent and the adoles-
cent provided written assent.

Assessment

Severity of CM (CM-severity) was measured across all sites with
the Childhood Trauma Questionnaire (CTQ) (Bernstein et al.,
1994). The short form of the CTQ is a standardized self-report
instrument consisting of 28 items containing five major subscales
of CM. Each one also features a cut-off to determine the presence
of emotional (⩾12), physical (⩾10), and sexual abuse (⩾8) or
emotional (⩾15) and physical neglect (⩾10). Three additional
items provide information on responders’ tendencies toward
minimization and denial. For our analyses, we assessed CM in
two ways. First, based on a score above the cut-off for at least
one of the abuse or neglect subscales, we divided our participants

into four groups (CM-type): no CM, neglect (no abuse), abuse
(no neglect), abuse + neglect. In a second analysis, we explored
the effect of CTQ total sum score as a continuous variable
(CM-severity).

Severity of depressive symptoms at the time of scanning wasmea-
sured in some sites with the Hamilton Depression Questionnaire
(HDRS-17), in others, the Beck Depression Inventory (BDI-II) or
Inventory of Depressive Symptomatology-Self Report (IDS-SR)
was used. Age of onset and antidepressant medication use at the
time of scan were also recorded in 11 and 12 sites, respectively.

Image processing and analysis

Participants all underwent structural T1-weighted MRI brain
scans locally at each site, where scans were analyzed using the
fully-automated and validated segmentation software FreeSurfer
(version 5.0 or higher) (Fischl et al., 2002). Image acquisition
parameters and software descriptions for each sample are given
in eTable 4. Deep brain structure volumes were extracted and visu-
ally inspected for segmentation accuracy. Parcellations for cortical
thickness and surface area of 68 (34 left and 34 right) regions
based on the Desikan–Killiany atlas (Desikan et al., 2006) and
left and right hemisphere measures were derived and visually
inspected for accuracy following a protocol designed to facilitate
harmonized image analysis across multiple sites (http://enigma.ini.
usc.edu/protocols/imaging-protocols/). Association between CM
and subcortical measures were previously published (Frodl et al.,
2017).

Statistical framework of mega-analysis

Statistical analyses were performed using SPSS statistics (version 24).
We performed ANOVAs, or Kruskal–Wallis tests as appropri-

ate, to compare at scan, age at MDD onset, clinical severity of
depression, and CTQ scores between groups and cohorts. The
χ2 tests were used to analyze differences between frequencies of
males and females.

Then, we built generalized estimating equation (GEE) models
with thickness or surface area of each region as the dependent
variable. Our models had a linear scale response. All participants
were included, irrespective of diagnosis. The independent
between-subject variable CM was defined in two ways: as the fac-
tor CM-type (0 = no CM, 1 = neglect, 2 = abuse, 3 = neglect +
abuse) or as CM-severity (continuous: total CTQ). Each of
these variables was included in separate models. In all models,
we included the between-subjects factors diagnosis (factor: 1 =
patients, 0 = HC), sex (factor: 0 = males, 1 = females), and the
within-subject factor hemisphere (left, right). Age (continuous),
neuroimaging cohort (factor), and total intracranial volume (con-
tinuous) were used as between-subject covariates. FreeSurfer ver-
sion and scanner type were comprised in the factor neuroimaging
cohort. As we did not expect CM-severity effects to be lateralized,
hemisphere was only included as a main effect. Our prior research
showed differential effects of CM-severity in predicting the vol-
ume of subcortical structures depending on sex and MDD diag-
nosis (Frodl et al., 2017). Therefore, we explored in our models
all possible interactions between CM, sex, and diagnosis for
both surface and thickness. To assess the effect of CM across all
brain areas, we first ran analyses on the total thickness and surface
across all regions respectively, adding region as a within-subject
factor. Then, we repeated the process for each region individually.
Finally, we explored the interaction between age and severity of
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CM while keeping all other terms in the model as the main
effects.

In all models, Wald χ2 tests were used to assess the significance
of each term. To account for multiple tests (34 regions), a false
discovery rate (FDR) correction was computed on the resulting
p-values. Findings were considered significant if pFDR<0.05. Any
significant interactive effects resulting from the models described
above were followed up with post-hoc testing.

Investigation of clinical confounds
A subset of our MDD cohort (N = 966) had more detailed clinical
information and allowed us to explore additional potential con-
founding effects. Therefore, we investigated if the thickness or
surface of all regions was significantly predicted by clinical sever-
ity (continuous: BDI total score, since HAM-D was available only
for a minor subset of participants), recurrence (factor: 0 = first
episode, 1 = recurrent episode), current antidepressant use (fac-
tor: 0 = no, 1 = yes), age of depression onset (continuous).
Information about clinical remission was not provided by all
sites; therefore, for this analysis, we defined it as current
BDI⩽12 (Riedel et al., 2010). We then built GEE models that fea-
tured these measures as predictors (main effects), together with
CM (severity or type), age, sex, site, hemisphere, and total intra-
cranial volume. Detailed information on this subsample is pre-
sented in eTable 14.

Results

Demographics

For details on participant’s demographics and clinical features, see
Table 1. Overall, data significantly differed between centers with
respect to sex, age, CTQ scores, and clinical features (see
eTable 5). Frequency of co-occurrence between abuse and neglect
is 12.7%. CM severity is influenced by abuse and neglect to a simi-
lar extent (β = 0.41 and β = 0.42, respectively).

Cortical thickness

Main effects of CM-severity
A summary of all significant findings is reported in Table 2. For
an overview of the results of the models run on each region, see
eTable 6.

We detected a significant main effect showing an inverse
relation between CM-severity and thickness of the banks of
the superior temporal sulcus (Wald χ2 = 14.583, pFDR = 0.033,
B = −0.001, Fig. 1). A significant main effect of CM was also pre-
sent on the thickness of the supramarginal gyrus (Wald χ2 =
8.889, pFDR = 0.049, B = −0.001, Fig. 1).

CM-severity and sex interaction
When considering all regions, the interaction between CM-
severity and sex was significant (Wald χ2 = 5.220, p = 0.022).
Dividing the data by sex, post-hoc analyses showed a significant
negative effect of CM-severity on cortical thickness in females
(Wald χ2 = 4.861, p = 0.027, B =−0.000649), but not in males
(Wald-χ2 = 1.287, p = 0.257, B =−0.000136).

When running models for each region separately, we found a
significant interaction between CM-severity and sex on the
cortical thickness of the rostral anterior cingulate cortex (Wald
χ2 = 13.556, pFDR = 0.008). Post-hoc analysis revealed a significant
positive effect of CM-severity on the cortical thickness of this
region in males (Wald χ2 = 14.426, p < 0.001, B = 0.002, Fig. 1)
but not in females (Wald χ2 = 3.174, p = 0.075, B =−0.0006).

CM-severity and age interaction
When considering all regions, a significant interaction between
age and severity of CM was detected (Wald χ2 = 11.105,
p = 0.001, B = −0.000035).

Models ran for each region separately indicated that this
interaction between age and severity of CM was significant across
all participants in the rostral anterior cingulate, isthmus of
the cingulate, posterior cingulate, lateral orbitofrontal gyrus,

Table 1. Demographic and clinical data

All subjects (n = 3872) Controls (N = 2588) Patients (N = 1284) Group difference

Females 2116 (54.6%) 1303 (50.3%) 813 (63.3%)

Males 1756 (45.4%) 1285 (49.7%) 471 (36.7%) χ2 = 58.2, p < 0.001

Age (years) 42.5 ± 15.5 43.3 ± 15.9 40.9 ± 14.6 t = 4.6, p < 0.001

Age of onset (years) – – 29.4 ± 14.0 –

Total CTQ 36.3 ± 12.7 32.6 ± 8.5 43.6 ± 16.1 p < 0.001a

Sexual abuse 5.5 ± 2.2 (233) 5.2 ± 1.2 (75) 6.2 ± 3.3 (158) p < 0.001a

Physical abuse 6.1 ± 2.5 (297) 5.6 ± 1.7 (91) 6.9 ± 3.4 (206) p < 0.001a

Emotional abuse 7.6 ± 4.0 (770) 6.5 ± 2.5 (246) 10.0 ± 5.1 (522) p < 0.001a

Physical neglect 7.0 ± 2.6 (243) 6.6 ± 2.2 (86) 8.0 ± 3.1 (157) p < 0.001a

Emotional neglect 9.9 ± 4.8 (646) 8.6 ± 3.8 (202) 12.5 ± 5.5 (444) p < 0.001a

BDI-IIb – 5.2 ± 4.4 18.6 ± 12.1 p < 0.001a

HDRSb – 2.9 ± 3.1 15.6 ± 9.8 p < 0.001a

ICV (in mm3) (1.53±0.19)×106 (1.54 ± 0.18)×106 (1.527 ± 0.2)×106 t = 2.7, p = 0.007

CTQ, Childhood Trauma Questionnaire; ICV, total intracranial volume; BDI#, Beck Depression Inventory; HDRS-17#, Hamilton Depression Rating Scale.
Shown are mean values±standard deviation. For CTQ subscales, number of subjects above the cut-off are given in brackets.
aMann Whitney U test used.
bFrom sites that used these ratings.
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parahippocampal gyrus, inferior frontal gyrus (IFG) pars opercu-
laris, IFG pars triangularis, superior frontal gyrus, banks of the
superior temporal sulcus, cuneus, fusiform gyrus, insula, precen-
tral gyrus, precuneus, supramarginal gyrus, and transverse tem-
poral gyrus (see Table 3, eTable 7, Fig. 2).

Main effects of CM-type
We found a significant main effect of CM type (eTable 10) in the
banks of the superior temporal sulcus (Wald χ2 = 19.888, pFDR =
0.006), inferior parietal lobe (Wald χ2 = 15.273, pFDR = 0.023),
middle temporal lobe (Wald χ2 = 12.123, pFDR = 0.048), precuneus
(Wald χ2 = 15.325, pFDR = 0.023), and supramarginal gyrus (Wald
χ2 = 13.990, pFDR = 0.026). In all cases, the neglect + abuse group
had lower mean thickness values compared to the no CM
group (all p < 0.01, Fig. 1) and there was no difference between
the abuse only as well as neglect only CM types and the no CM
group.

CM-type and age interaction
The interaction between age and type of CM was significant
across all participants for most regions (see Table 3, eTable 11).
In all cases, the effects of age were more negative in the neglect
+ abuse group compared to the CM group (all p < 0.05).

Cortical surface area

A summary of all significant findings is reported in Table 2. For
an overview of the results of the models run on each region, see
eTable 8.

Main effects of CM-severity
Across all regions, a negative main effect of CM-severity on the
cortical surface area was observed (Wald χ2 = 4.413, p = 0.036,
B = −0.414). When running separate models for each region
(eTable 8), we detected a significant inverse main effect of
CM-severity on the surface area of the middle temporal gyrus
(Wald χ2 = 12.368, pFDR = 0.015, B =−1.504, Fig. 3).

CM-type, diagnosis, and sex interaction
We found a significant interaction between CM type, diagnosis,
and sex (eTable 12) in the caudal anterior cingulate (Wald χ2 =
17.807, pFDR < 0.001). Post-hoc testing revealed that, in depressed
males, those having suffered from either abuse or neglect had a
lower average cortical surface area of the caudal anterior cingulate
cortex than those who had no history of CM ( p = 0.003 and
p = 0.017, respectively, Fig. 3).

CM-severity/type and age interaction
We found no effects of the interaction between CM-severity or
CM type and age in predicting cortical surface area (eTable 9).

Table 2. Main findings derived from the GEE models not including the interaction of childhood maltreatment and age

Participants Wald χ2 pFDR Effect

Thickness

CM severity

Overall thickness Females 4.861 0.027 −0.001

Rostral anterior cingulate cortex Males 14.426 <0.001 0.002

Banks of the superior temporal sulcus All 14.583 0.004 −0.001

Supramarginal gyrus All 8.889 0.049 −0.001

CM type

Banks of the superior temporal sulcus Neglect + Abuse > no CM 19.888 0.006 −0.036

Inferior parietal lobe Neglect + Abuse > no CM 15.273 0.023 −0.022

Middle temporal lobe Neglect + Abuse > no CM 12.123 0.048 −0.025

Precuneus Neglect + Abuse > no CM 15.325 0.023 −0.020

Supramarginal gyrus Neglect + Abuse > no CM 13.990 0.026 −0.024

Surface

CM severity

Overall surface area All 4.413 0.036 −0.414

Middle temporal lobe All 12.368 0.015 −1.504

CM type

Caudal anterior cingulate Depressed males, Neglect > no CM 17.807 0.003 −44.597

Depressed males, Abuse > no CM 5.647 0.017 −51.396

Wald χ2 and p values of CM severity and type are shown for the regions where they were significant. For all effects see Supplemental Tables. Effects are coefficients for the model term CM
severity or the estimates of the indicated contrast for CM type. CM, childhood maltreatment; FDR, false discovery rate.
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Investigation of clinical confounds
Our post-hoc investigation in a subset of patients with detailed
information showed no significant effects of clinical variables
on thickness or surface (all p > 0.05). See eTables 15–18 for the
model effects.

Discussion

This study represents the largest effort worldwide to investigate
the association between CM and cortical brain structure in a
large sample of MDD patients and healthy subjects. We found
that CM has a subtle but widespread effect on cortical thickness
and surface area, which is likely influenced by sex and age.

Two procedures of describing CM were used. First, the dimen-
sional measure of CM severity allowed for continuous analysis.
Second, the categorical classification of CM into no CM, only
neglect, only abuse, and both abuse and neglect, allowed for an

analysis of the type of CM. It should be highlighted that partici-
pants exposed to both neglect and abuse also had higher total CM
values.

Severity of CM was associated with lower mean cortical surface
area regardless of the region across all MDD patients and HC. In
women, higher severity of CM was also associated with thinner
thickness across all regions. These findings are consistent with
prior research showing widespread effects of severity of CM on
the brain irrespective of psychopathological status (Chaney
et al., 2014).

Regardless of diagnosis, when individual regions were investi-
gated, this effect of CM severity survived correction for multiple
testing in temporal and temporo-parietal regions. Specifically,
participants with higher CM severity had significantly thinner
cortex in the banks of the superior temporal sulcus and the supra-
marginal gyrus. When considering the type of abuse, high severity
of CM, represented by concurrent childhood neglect and abuse,
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Fig. 1. Effect of CM predicting cortical thickness. Coefficients for the GEE model term CM severity or those for the neglect + abuse group compared to the no-CM
group are plotted on an inflated left brain hemisphere (effects were bilateral). Only the neglect + abuse group was different from the no-CM group. CM, childhood
maltreatment; GEE, generalized estimating equations.
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Table 3. Main findings derived from the GEE models predicting cortical thickness and including the interaction of childhood maltreatment with age

Wald χ2 pFDR Effect

CM severity × Age

Overall thickness 11.105 0.001 −3.50 × 10−5

Banks of superior temporal sulcus 4.997 0.047 −3.59 × 10−5

Cuneus 7.373 0.020 −3.32 × 10−5

Frontal pole 10.448 0.007 −8.03 × 10−5

Fusiform 6.714 0.026 −3.50 × 10−5

Insula 8.214 0.014 −4.16 × 10−5

Isthmus of cingulate 11.149 0.007 −5.87 × 10−5

Lateral orbitofrontal 8.952 0.011 −4.37 × 10−5

Parahippocampal 6.031 0.032 −6.00 × 10−5

IFG pars opercularis 11.014 0.007 −4.70 × 10−5

IFG pars triangularis 8.583 0.011 −4.14 × 10−5

Posterior cingulate 17.682 0.001 −5.78 × 10−5

Precentral 5.188 0.046 −3.34 × 10−5

Precuneus 6.272 0.029 −3.19 × 10−5

Rostral anteriorcingulate 10.262 0.007 −5.83 × 10−5

Superior frontal 7.301 0.020 −4.22 × 10−5

Superior temporal 8.774 0.011 −4.35 × 10−5

Supramarginal 5.189 0.046 −3.22 × 10−5

Transverse temporal 8.941 0.011 −5.75 × 10−5

CM type × Age

Caudal anterior cingulate 10.155 0.030 −0.002

Caudal middle frontal 16.297 0.002 −0.002

Cuneus 15.442 0.002 −0.001

Frontal pole 16.065 0.002 −0.003

Inferior parietal 9.848 0.034 −0.001

Insula 22.037 <0.001 −0.002

Isthmus of cingulate 23.710 <0.001 −0.003

Lateral orbitofrontal 17.174 0.002 −0.002

Medial orbitofrontal 13.542 0.008 −0.001

Paracentral 9.383 0.039 −0.001

Parahippocampal 16.405 0.002 −0.003

IFG pars opercularis 27.556 <0.001 −0.002

IFG pars orbitalis 8.785 0.047 −0.002

IFG pars triangularis 20.837 <0.001 −0.002

Posterior cingulate 35.357 <0.001 −0.003

Precentral 17.291 0.002 −0.002

Precuneus 13.794 0.006 −0.001

Rostral anteriorcingulate 27.847 <0.001 −0.003

Rostral middlefrontal 9.544 0.037 −0.001

Superior frontal 28.174 <0.001 −0.002

Superior temporal 22.270 <0.001 −0.002

Supramarginal 17.641 0.002 −0.002

Transverse temporal 22.386 <0.001 −0.003

Wald χ2 and p values of CM severity × Age and CM type × Age are shown for the regions where they were significant. For all effects see Supplemental Tables. Effects are coefficients for the
model term CM severity × Age or those for Age in the Neglect + Abuse group v. the no-CM group. CM, childhood maltreatment; FDR, false discovery rate.
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was once again associated with reduced thickness in these two
areas and additionally in the precuneus, middle temporal lobe,
and inferior parietal cortex. Moreover, participants with higher
severity of CM also showed a smaller surface area of the middle
temporal gyrus. The magnitude of these negative effects on thick-
ness and surface area pointed toward a reduction around
0.001 mm of thickness and around 0.4–1.5 mm2 of surface with
each one-point increase in CTQ score depending on the brain
region. For example, an increase of 100 points in the CTQ scale
would be associated with a 0.1 mm (or 4%) decrease of cortical
thickness in the banks of the superior temporal sulcus. The mid-
dle temporal lobe is thought to be essential for our ability to
understand actions and semantic associations (Davey et al.,
2016). One possibility is that CM may lead to difficulties in
semantic retrieval through alterations in regions of temporal cor-
tex and the default mode network. Indeed, other studies have also
demonstrated that individuals with higher severity of CM showed
reduced cortical surface on the left middle temporal area and lin-
gual gyrus (Kelly et al., 2013). In contrast, in a study of

adolescents and young adults exposed to CM, increased cortical
volume was observed in the left inferior and middle temporal
gyri relative to HC (Lim et al., 2018). In the present study, the
other regions we report showing an impact from CM type are
located in the temporo-parietal area and around the temporo-
parietal junction; both of these regions play a role in the theory
of mind processing which is important during daily social inter-
actions (Saxe and Kanwisher, 2003). Deficits in these areas might
suggest a disadvantage for subjects with a history of CM, in par-
ticular those with increased severity and more types of CM. No
significant main effects of severity of CM were detected for
other regions we hypothesized to be vulnerable. For example,
prior studies found a significant main effect of CM in different
regions such as fronto-limbic areas, visual cortex, and cerebellum
(Kelly et al., 2013; Yang et al., 2017). This might be due to smaller
sample sizes and more homogeneity in prior studies: in our ana-
lysis, which features a larger sample size of N = 3872, we detected
an overall effect of severity of CM on the whole cortex with some
prominence in the temporal and temporo-parietal regions.
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Fig. 2. Effect of CM × Age predicting cortical thickness. Coefficients for the GEE model term CM severity × Age or those for Age in the abuse + neglect group com-
pared to the no-CM group are plotted on an inflated left brain hemisphere (effects were bilateral). CM, childhood maltreatment, GEE, generalized estimating
equations.
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Another interesting finding was that males, but not females,
with a more severe history of CM, regardless of diagnosis, showed
distinctly thicker rostral anterior cingulate cortices. These results
suggest sex differences in the effects of CM on the structure of
this region (Fallucca et al., 2011; Canu et al., 2015). The anterior
cingulate cortex is involved in emotional and inhibitory processes
(Garavan et al., 2006; Steele et al., 2013). Thus, males seem to be
particularly sensitive to CM with regards to the thickness in a
region relevant to emotion regulation and might show a reactive
increase of thickness. Whether this thickness increase of the ros-
tral ACC is adaptive cannot be effectively addressed in the current
sample, as longitudinal data and resiliency measures were not
available for the bulk of the cohort. In this context, it is interesting
that male patients with a history of neglect and abuse had signifi-
cantly smaller surface areas of the caudal ACC compared to those
without CM, pointing toward a negative effect of CM in the cau-
dal ACC in participants who developed MDD. In healthy subjects,

such an effect of CM was not seen in the caudal ACC and we
could tentatively ascribe to resilience (Feder et al., 2009).

Childhood maltreatment by age interaction

A novel finding detected in our secondary analysis was that CM
severity and age interacted regardless of diagnosis to predict
both the thickness and surface area of several regions involved
in emotional processing, such as portions of the cingulate, orbito-
frontal, insular, dorsolateral prefrontal, and medial prefrontal cor-
tices. In these areas, older people including patients and controls
with higher CM severity had lower cortical thickness. The orbito-
frontal and dorsomedial prefrontal cortices can be seen as separ-
ate networks interacting closely with limbic structures, but also
showing cortico-cortical interconnections with each other
(Ongur and Price, 2000; Phillips et al., 2008). These regions
allow the brain to process emotionally salient information and
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Fig. 3. Effect of CM predicting cortical surface. Coefficients for the GEE model term CM severity or those for the abuse only group compared to the no-CM group are
plotted on an inflated left brain hemisphere (effects were bilateral). The neglect group showed a similar result in the same region. CM, childhood maltreatment;
GEE, generalized estimating equations.
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help with the regulation of emotional behavior (Phillips et al.,
2008). The insula is closely interconnected with the orbitofrontal
cortex and is involved in emotion and executive processing as well
as working memory (Levens and Phelps, 2010). The cingulate
cortex is also well known to have cognitive and emotional func-
tions: its dorsal parts are involved in emotion evaluation, whereas
the ventral parts and the dorsomedial PFC are involved in emo-
tion regulation (Etkin et al., 2011). Overall, these results are con-
sistent with previous studies showing that CM-severity impacts
regions involved in emotion regulation, including the insula
(Teicher et al., 2014).

Also, our cross-sectional data suggest that cortical thickness
might decrease more rapidly with age in individuals with a
more severe history of CM, although this still needs to be con-
firmed by longitudinal analyses. It will be critical for future stud-
ies to assess the effects of abuse across multiple time points and to
consider such abuse in relation to the age of participants.

Diagnosis and CM interactions

In the present study, no effect of diagnosis was detected and we
also did not find a significant interaction between diagnosis and
CM. It is possible that we could not replicate the main effect of
MDD diagnosis on OFC and ACC thickness because of the smal-
ler sample size of the current study (overall N = 3872) compared
to the sample size in our previous ENIGMA MDD meta-analysis
that focused on the effects of MDD (overall N = 10 105) (Schmaal
et al., 2017). However, since this is the largest joint mega-analysis
concerning cortical thickness and CM to date, this null finding
could also suggest that the effects of MDD commonly reported
in studies and meta-analyses may be the result of the interaction
of several underlying variables. For example, different effects of
MDD depending on age and onset were earlier highlighted in
Schmaal et al., (2017). Our findings suggest that CM could be
another factor that accounts in part for structural differences
between depressed patients and HC.

Strengths and limitations

A major strength of the study is the large sample size with a rele-
vant control sample allowing inclusion of all 34 left and right cor-
tical brain regions in the analyses. However, a larger sample from
different sites also limits the common information collected, since
not all sites used the same assessments. Not all patients were drug
free and, further, the history of antidepressants use as well as dur-
ation, type, and dosage of antidepressant treatment were not
assessed completely during the lifetime, so we cannot rule out
effects of antidepressant exposure influencing our results.
Additionally, psychopathology was assessed with different ratings,
so that it was not possible to use depression severity as a single
covariate in the analysis. Overall, the datasets from the different
samples included in the mega-analysis were significantly hetero-
geneous regarding demographics and clinical features. This is a
common limitation of multi-site analyses and we accounted for
this effect by adding site as a covariate to all of our models. It
is worth noting that we were able to analyze the influence of clin-
ical confounds in a subset of our MDD cohort, where we did not
find any significant effect of recurrence, antidepressant medica-
tion, remission, severity or age of depression onset in predicting
cortical thickness or surface. However, measures of socio-
economic status and education have been shown to play a role
in brain structure (Ritchie et al., 2017), but were unfortunately

unavailable in our sample. Finally, we considered hemisphere as
a within-subject effect in our dataset. Our hypothesis was that
CM would affect anatomically distinct regions differently rather
than be selective for a specific region on a specific hemisphere.
Therefore, we believed that including all possible interactions
between regions and hemisphere would lead to an unnecessarily
complex model. However, it is possible that besides the bilateral
effects we report, subtler lateralized effects of CM might exist in
specific areas.

Even if our investigation features the broad variation of ‘real
life’ clinical populations, future studies are needed to confirm
our findings in carefully controlled datasets. Here, we explored
the effect of CM in a sample of healthy participants and patients
with MDD. Because it is not clear how the severity or type of CM
may affect the development of structural brain measures, it will be
important to consider the onset and timing of CM in future (Ho
et al., 2018). In addition, future longitudinal data are required to
establish whether cortical thickness might decrease more rapidly
with age in individuals with a more severe history of CM, as
our current cross-sectional data may suggest. For this analysis,
while it was possible to use extracted cortical measures from spe-
cific regions of interest, it was not possible to retrospectively ana-
lyze the original MRI datasets to perform a whole-cortex analysis
with FreeSurfer. A surface-based analysis across the entire cortex
may afford more sensitivity in detecting effects of CM and thus
could be a future step.

Conclusions

The results of our study support the idea that CM-severity
appears to affect the structure of temporal and parietal regions
in particular. Thus, there are effects in the default mode network
and in regions involved in theory of mind as well as perception.
Interestingly, CM may interact with the effect of age on cortical
thickness in these regions and others involved in emotion regula-
tion. Thus, future longitudinal studies should investigate if sub-
jects with a history of CM may be more prone to cortical
thinning during aging or if CM results in changes that mimic
the aging.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S003329171900093X
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