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Abstract 221 
 222 

Background: Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, 223 

aging-related diseases, and mortality. We examined potential advanced brain aging in MDD patients, and 224 

whether this process is associated with clinical characteristics in a large multi-center international dataset.  225 

Methods: We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI 226 

scans from 29 samples worldwide. Normative brain aging was estimated by predicting chronological age 227 

(10-75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and 228 

total intracranial volume measures separately in 1,147 male and 1,386 female controls from the ENIGMA 229 

MDD working group. The learned model parameters were applied to 1,089 male controls and 1,167 230 

depressed males, and 1,326 female controls and 2,044 depressed females to obtain independent 231 

unbiased brain-based age predictions. The difference between predicted “brain age” and chronological 232 

age was calculated to indicate brain predicted age difference (brain-PAD).  233 

Findings: On average, MDD patients showed a higher brain-PAD of +0.90 (SE 0.21) years (Cohen’s 234 

d=0.12, 95% CI 0.06-0.17) compared to controls. Relative to controls, first-episode and currently 235 

depressed patients showed higher brain-PAD (+1.2 [0.3] years), and the largest effect was observed in 236 

those with late-onset depression (+1.7 [0.7] years). In addition, higher brain-PAD was associated with 237 

higher self-reported depressive symptomatology (b=0.05, p=0.004).  238 

Interpretation: This highly powered collaborative effort showed subtle patterns of abnormal structural 239 

brain aging in MDD. Substantial within-group variance and overlap between groups were observed. 240 

Longitudinal studies of MDD and somatic health outcomes are needed to further assess the predictive 241 

value of these brain-PAD estimates.  242 

Funding: This work was supported, in part, by NIH grants U54 EB020403 and R01 MH116147. 243 
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Research in context 249 

Evidence before this study 250 

Accumulating evidence from studies suggests that, at the group level, MDD patients follow advanced 251 

aging trajectories, as their functional (e.g. walking speed, hand grip strength) and biological state (e.g. 252 

telomeres, epigenetics, mitochondria) reflects what is normally expected at an older age (i.e. biological 253 

age “outpaces” chronological age). While subtle structural brain abnormalities have been identified in 254 

MDD, it remains to be elucidated whether patients also deviate from the normal aging process at the 255 

brain level (brain predicted age difference [brain-PAD]) and whether this deviation is associated with 256 

clinical characteristics. We searched PubMed for relevant literature published in English [Language] 257 

before January 25, 2019. In this search we used ((‘brain age’ OR ‘brainAGE’ OR ‘brain-PAD’ OR 258 

‘predicted brain ag*’) AND ‘depression’ [Title/Abstract]), which revealed only two papers. One study found 259 

that MDD patients (N=104) were estimated to be +4.0 years older using brain-based age prediction 260 

models. A second study reported a non-significant relationship between brain-PAD and a short self-report 261 

scale of depressive symptoms in male veterans (N=359) who served in the United States military. Thus, 262 

whether a diagnosis of MDD is associated with the multivariate metric of brain aging in a large dataset, 263 

and which clinical characteristics further impact this metric, remains elusive. 264 

  265 

Added value of this study 266 

To our knowledge, this is the first study to examine deviations of normative brain aging in MDD and 267 

associated clinical heterogeneity in a large international and multi-center dataset, by pooling data from 268 

>8,000 subjects from 29 research samples worldwide. The current study shows that chronological age 269 

can be predicted from gray matter features in a large heterogeneous dataset with an age range covering 270 

almost the entire lifespan (10-75 years). Moreover, we show that our brain age prediction model 271 

generalizes to unseen hold-out samples, as well as to completely independent samples from different 272 

scanning sites. We found that, at the group level, patients had, on average, a +0.90 years greater 273 

discrepancy between their predicted and actual age compared to control participants and there was a 274 

subtle relationship between self-reported symptom severity and advanced brain aging in the MDD group. 275 

Finally, the strongest effects were observed in patients with a late onset of depression (>55 years old; 276 
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+1.7 years), currently depressed (+1.2 years), and in their first episode (+1.2 years), compared to 277 

controls.  278 

  279 

Implications of all the available evidence 280 

This study confirms previously observed advanced biological aging in MDD at the group and brain level of 281 

analysis. However, it is important to mention the large within-group and small between-group variance, 282 

demonstrating that many patients did not show advanced brain aging. Our work contributes to the 283 

maturation of brain age models in terms of generalizability, deployability, and shareability, in pursuance of 284 

a canonical brain age algorithm. Further, other research groups with deep clinical phenotyping and 285 

longitudinal information on mental and somatic health outcomes may use our model to promote continued 286 

growth of knowledge for greater clinical application.  287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 
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Introduction 302 

 303 

Major Depressive Disorder (MDD) is associated with an increased risk of cognitive decline,1 brain 304 

atrophy,2 aging-related diseases,2 and importantly, overall mortality.3,4 While normal aging is associated 305 

with significant loss of gray matter,5 growing evidence suggests that neuropsychiatric disorders such as 306 

depression may have an accelerating effect on age-related brain atrophy.6 Simultaneously, the aging 307 

population is increasing, and both depression and aging have been linked to poor somatic health and 308 

quality of life, and increased costs for society and healthcare.7,8 This underscores the importance of 309 

identifying brain aging patterns in MDD patients to determine whether and how they deviate from healthy 310 

patterns of aging. 311 

 312 

Emerging evidence indicates that chronological age and biological age may be distinct processes that 313 

can diverge. Current multivariate pattern methods can predict chronological age from biological data (i.e., 314 

epigenetics, transcriptomics, proteomics, metabolomics, see Jylhava, Pedersen, and Hagg for a review)9 315 

with high accuracy. Similarly, chronological age can be predicted from brain images, resulting in an 316 

estimate known as  “brain age”.10 Importantly, by calculating the difference between a person’s estimated 317 

brain age and their chronological age, one can translate a complex aging pattern across the brain into a 318 

single outcome:11 brain-predicted age difference (brain-PAD).12 A positive brain-PAD represents having 319 

an ‘older’ brain than expected for a person of their chronological age, whereas a negative brain-PAD 320 

signals a ‘younger’ brain than expected at the given chronological age. Higher brain-PAD scores have 321 

been associated with greater cognitive impairment,13 increased morbidity,10 and exposure to cumulative 322 

negative fateful life events (e.g., death of a close family member, financial hardship, or divorce).14 323 

 324 

Prior studies from the Enhancing NeuroImaging Genetics through Meta-analysis (ENIGMA)-MDD 325 

consortium with sample sizes over 9,000 participants have shown subtle reductions in subcortical 326 

structure volumes in major depression that were robustly detected across many samples worldwide. 327 

Specifically, smaller hippocampal volumes were found in individuals with earlier age of onset and 328 

recurrent episode status.15 In addition, different patterns of cortical alterations were found in adolescents 329 
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versus adults with MDD, suggesting that MDD may affect brain morphology (or vice versa) in a way that 330 

depends on the developmental stage of the individual.16 Likewise, brain development and aging likely 331 

differ by sex.17 The different neural and clinical presentations of depression and aging across sex 332 

emphasize the need to stratify populations studied into groups of females and males to better understand 333 

sex-dependent or sex-specific effects. 334 

 335 

Given that prior studies suggest advanced biological aging in MDD (e.g., shorter telomere length,18 336 

greater epigenetic aging,19,20 and advanced brain aging),6 it is important to examine whether biological 337 

aging findings in depression can be confirmed in a large heterogeneous dataset consisting of many 338 

independent samples worldwide, based on commonly derived gray matter measures. Only a handful of 339 

studies have investigated brain-PAD in people with psychiatric disorders,21 showing older brain-PAD in 340 

schizophrenia,6,22,23 borderline personality disorder, and first-episode and at-risk mental state for 341 

psychosis,6,24 yet findings were less consistent in bipolar disorder.23,25  342 

  343 

Only two studies to date specifically investigated premature brain aging in MDD - using relatively small 344 

samples of 104 and 211 patients, respectively, with inconsistent findings of a brain-PAD of +4.0 years 345 

versus no significant difference.6,26 The current study is the first to examine brain aging in over 8,000 346 

individuals from the ENIGMA MDD consortium (29 cohorts, 11 countries worldwide), covering almost the 347 

entire lifespan (10-75 years). We hypothesized higher brain-PAD in MDD patients compared to controls. 348 

We also conducted exploratory analyses to investigate whether higher brain-PAD in MDD patients was 349 

associated with demographic (age, sex) and clinical characteristics such as disease recurrence, 350 

antidepressant use, remission status, depression severity, and age of onset of depression. 351 

 352 

Methods  353 

 354 

Samples 355 

Twenty-nine cohorts from the ENIGMA-MDD working group with neuroimaging and clinical data from 356 

MDD patients and controls participated in this study (appendix). The combined sample covered almost 357 
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the entire lifespan (10-75 years of age). Details regarding demographics, clinical characteristics, and 358 

exclusion criteria for each cohort may be found in the appendix. Because the literature suggests 359 

differential brain development and maturation by sex,17 we estimated brain age models separately for 360 

male and female samples. Sites with less than ten healthy males or females were excluded from the 361 

training dataset and subsequent analyses (for exclusions see appendix). In total, we included data from 362 

N=8,159 (93.5%) participants, including N=4,948 (56.7%) control individuals (N=2,236 [45.2%] males; 363 

N=2,712 [54.8%] females) and N=3,211 (36.8%) individuals with MDD (N=1,167 [36.3%] males; N=2,044 364 

[63.7%] females). All participating sites obtained approval from the appropriate local institutional review 365 

boards and ethics committees, and all study participants or their parents/guardians provided written 366 

informed consent. 367 

 368 

Training and test samples 369 

An overview of the data partition is shown in figure 1A and described in more detail in the appendix. 370 

Structural brain measures from 1,147 male obtained from 28 scanners and 1,386 female controls 371 

obtained from 34 scanners were included in the training sample. The top panel in figure 1B shows the 372 

chronological age distribution in the training sample. A hold-out dataset comprised of controls served as 373 

test sample to validate the accuracy of brain age prediction model; 1,089 male and 1,326 female controls 374 

from the same scanning sites were included. Likewise, 1,167 male and 2,044 female MDD patients from 375 

the corresponding neuroimaging sites were included in the MDD test sample. The bottom panel in figure 376 

1B shows the chronological age distributions across the test samples. More details on data partitioning 377 

are shown in the appendix.  378 
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 379 

 380 
Figure 1: (A) Schematic illustration of features used and data partition into 381 
training and test samples, separately for males and females. (B) Data from 382 
control groups (blue) were partitioned within scanning sites preserving 383 
chronological age distribution. Major depressive disorder (MDD) groups are 384 
shown in red. The top panel illustrates the male and female training samples. The 385 
bottom panels show the male (controls: mean [SD] in years, 40.0 [16.5]; MDD: 386 
39.6 [14.8]) and female test samples (controls: 37.6 [16.2]; MDD: 40.0 [15.5]). 387 
ICV, intracranial volume; SVR, support vector regression. 388 

11
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Image processing and analysis 389 

Structural T1-weighted scans of each subject were acquired at each site and analyzed locally using 390 

standardized protocols to facilitate harmonized image analysis across multiple sites 391 

(http://enigma.ini.usc.edu/protocols/imaging-protocols/). Briefly, the fully automated and validated 392 

segmentation software, FreeSurfer 5.1 or 5.3 was used to segment seven subcortical gray matter regions 393 

(nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus), lateral 394 

ventricles, 34 cortical thickness and 34 surface area measures, and total intracranial volume (ICV). 395 

Segmentations were visually inspected and statistically examined for outliers. Further details on cohort 396 

type, image acquisition parameters, software descriptions, and quality control may be found in the 397 

appendix. Individual-level structural brain measures and clinical and demographic measures from each 398 

cohort were pooled at a central site to perform the mega-analysis.  399 

 400 

Brain age prediction model 401 

To estimate the normative brain age models, we combined the FreeSurfer measures from the left and 402 

right hemispheres by calculating the mean ((left+right)/2) of volumes for subcortical regions and lateral 403 

ventricles, and thickness and surface area for cortical regions. Using a mega-analytic approach, we first 404 

estimated normative models of the association between the 77 average structural brain measures and 405 

chronological age in the training sample of controls (separately for males and females) using a support 406 

vector regression (SVR) with a linear kernel, from the python-based sklearn package.27 All measures 407 

were combined as predictors in a single multivariate model.  408 

 409 

To assess model performance and optimize the regularization parameter, C, we performed 10-fold cross-410 

validation. To quantify model performance, we calculated the mean absolute error (MAE) between 411 

predicted brain age and chronological age. Both male and female brain age models will be made public 412 

upon publication (https://www.photon-ai.com/); for guidelines and instructions, see appendix. Of note, we 413 

also estimated a model including left and right hemisphere measures, that did not result in significantly 414 

superior prediction accuracy, which allowed us to reduce the feature space to average left/right values as 415 

described (data not shown). We also compared the SVR to other machine learning methods, including 416 
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ridge regression, Gaussian process regression, and generalized additive models. Results of these 417 

comparisons are provided in the appendix; briefly, the different approaches all showed similar 418 

performance to the model presented here.  419 

 420 

Model validation  421 

Model performance was further validated in the test sample of controls. The parameters learned from the 422 

trained model in controls were applied to the test sample of controls and to the MDD test samples to 423 

obtain brain-based age estimates for these individuals. To assess model performance in these test 424 

samples, we calculated: a) MAE; b) Pearson correlation coefficients between predicted brain age and 425 

chronological age; and c) the proportion of the variance explained by the model (R²). To evaluate 426 

generalization power to completely independent test samples, we also applied the training model 427 

parameters to healthy control subjects (males, N=646; females, N=757) from the ENIGMA Bipolar 428 

Disorder (BD) working group (appendix).  429 

 430 

Statistical analyses  431 

All statistical analyses were conducted in the test samples only. Brain-PAD (predicted brain-based age - 432 

chronological age) was calculated for each individual and used as the outcome variable. While different 433 

prediction models were built for males and females separately, the generated brain-PAD estimates were 434 

pooled for statistical analyses. For our main analysis, we investigated three linear mixed models (LMM) of 435 

brain-PAD: a) main effects of age, sex, and diagnosis, b) all main effects and all second order interactions 436 

of age, sex, and diagnosis, and c) main effects and all second and third order interactions of age, sex, 437 

and diagnosis. To calculate the association between each FreeSurfer feature and brain-PAD, we used 438 

univariate regressions corrected for multiple comparisons (false discovery rate; FDR). Surface area and 439 

subcortical measures were additionally corrected for ICV.  440 

 441 

Within MDD patients, we also used LMM to examine associations of brain-PAD with clinical 442 

characteristics, including recurrence status (first vs. recurrent episode), antidepressant use at time of 443 

scanning (yes/no), remission status (currently depressed vs. remitted), depression severity at study 444 
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inclusion (the 17-item Hamilton Depression Rating Scale (HDRS-17) and the Beck Depression Inventory 445 

(BDI-II)), and age of onset of depression (categorized as: early, <26 years; adult, >25 & <56 years; and 446 

late onset, >55 years). All analyses included scanning site as a random intercept to account for scanner 447 

and FreeSurfer version differences and were corrected for chronological age, age2, age3, and sex, tested 448 

two-sided. Findings were considered statistically significant at p<0.05. 449 

 450 

Role of the funding source 451 

The study design, data collection, analysis, interpretation, writing, and submission of this report were 452 

performed independently from any funding source. The corresponding author had full access to the 453 

complete dataset in the study. All authors had the final responsibility for the decision to submit for 454 

publication.  455 

 456 

Results   457 

 458 

Brain age can be predicted from regional brain measures   459 

Within the training set of controls, under cross-validation the structural brain measures predicted 460 

chronological age with a MAE of 6.86 (SD 5.32) years in males and 6.91 (5.34) years in females. 461 

Correlations between chronological and predicted brain age were r=0.85, p<0.001 in males, and r=0.84, 462 

p<0.001 in females, with R2=0.72 and R2=0.71, respectively. When applying the model parameters to the 463 

test samples of controls, the MAE was 6.35 (4.92) and 6.63 (5.08) years for males and females, 464 

respectively. Similarly, within the MDD group, the MAE was 6.86 (5.58) and 7.22 (5.42) years for males 465 

and females, respectively. Figure 2 shows the correlation between chronological age (y-axis) and 466 

predicted brain age (x-axis)28 in the out-of-sample control (males r=0.87, p<0.001; R²=0.76 and females 467 

r=0.86, p<0.001; R²=0.74), and MDD test samples (males r=0.81, p<0.001; R2=0.66 and females r=0.82, 468 

p<0.001; R2=0.68). The model also showed relatively good generalization to completely independent 469 

healthy control samples of the ENIGMA Bipolar Disorder working group (MAE=7.24 [SD 5.82]; r=0.76, 470 

p<0.001; R2=0.57 for males and MAE=7.45 [5.44]; r=0.75, p<0.001; R2=0.56, for females), appendix.  471 

 472 
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 473 

 474 

 475 

 476 

477 
 478 
Figure 2: Brain age prediction based on 7 FreeSurfer subcortical volumes, lateral ventricles, 34479 
cortical thickness and 34 surface area measures, and total intracranial volume. The plots show the480 
correlation between chronological age and predicted brain age in the test samples, derived from the 10-481 
fold cross-validation of the Support Vector Regression model in the training samples, separately for males482 
(left) and females (right). The colors indicate scanning sites and each circle represents an individual483 
subject: the upper panels display controls and the lower panels MDD patients. Diagonal dashed line484 
reflects the line of identity (x=y).  485 
 486 

 487 

 488 

 489 

 490 

15

 

34 
he 

-
es 
al 

ne 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/560623doi: bioRxiv preprint first posted online Feb. 26, 2019; 

http://dx.doi.org/10.1101/560623
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

MDD patients show increased brain-PAD compared to controls 491 

There was a main effect of diagnostic group. Specifically, individuals with MDD showed +0.90 (SE 0.21)492 

years higher brain-PAD than controls (p<0.0001, Cohen’s d=0.12, 95% CI 0.06-0.17), figure 3.493 

Additionally, we found significant main effects for age, age2, and age3 (b=-0.02-0.72, all p’s<0.0001), and494 

a trend for a main effect of sex, with higher brain-PAD in females (b=0.39, p=0.0501). Our analyses495 

revealed no significant three-way interaction between diagnosis-by-age-by-sex, nor significant two-way496 

interactions. Of note, there were no significant interactions with age, age2, or age3 and MDD status; thus,497 

the residual age effects in the brain-PAD estimates did not influence the case-control difference. Further,498 

all nonlinear age effects were accounted for in analyses. All FreeSurfer features, except the entorhinal499 

and temporal pole average thickness, showed a significant (PFDR<0.05) association with brain-PAD. All500 

features, except the mean lateral ventricles, yielded negative associations, and are visualized in figure 4. 501 

 502 

 503 

 504 

 505 

 506 

Figure 3: Case-control differences in brain aging. Brain-PAD (predicted brain age - chronological age)507 
in patients with major depressive disorder (MDD) and controls. Group level analyses showed that MDD508 
patients exhibited significantly higher brain-PAD than controls (b=0.90, p<0.0001), although large within-509 
group variation and between-group overlap is observed. The brain-PAD estimates are adjusted for510 
chronological age, age2, age3, sex and scanning site. 511 
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 519 
 520 
 521 
 522 
 523 

 524 
Figure 4: Univariate associations between brain predicted age 525 
difference (predicted brain age - chronological age; brain-PAD) and 526 
FreeSurfer measures across controls and major depressive disorder 527 
(MDD) groups. Effect sizes (regression coefficients) are shown for 528 
regions with a significant (PFDR<0.05) negative association with brain-529 
PAD, only the mean lateral ventricles yielded a significant positive 530 
association. The figure shows associations with cortical thickness 531 
measures (top row), cortical surface areas (middle row), and subcortical 532 
volumes (bottom row). The brain-PAD estimates are adjusted for 533 
chronological age, age2, age3, sex and scanning site. The significant 534 
negative association with ICV was excluded from this figure for display 535 
purposes.  536 
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 547 
Clinical characteristics and brain-PAD  548 

Strongest effects of higher brain-PAD were observed in patients with late age of onset of depression (>55 549 

years; +1.7 years, p=0.009, Cohen’s d=0.17), currently depressed (+1.2y, p<0.0001, d=0.13), and first 550 

episode (+1.2y, p=0.0001, d=0.12) MDD patients, compared to controls. However, we observed relatively 551 

similar effects in remitted (+1.2y, p=0.01, d=0.11), both antidepressant users and antidepressant 552 

medication-free (both +0.9y, p’s<0.002, d=0.09), early age of onset of depression (<26 years; +0.8y, 553 

p=0.0005, d=0.10), and recurrent depressed patients (+0.7y, p=0.003, d=0.08), as well as in those with 554 

an adult age of onset of MDD (+0.5y, p=0.02, d=0.06), compared to controls (table 1). Post-hoc 555 

comparisons between the MDD subgroups did not show any significant differences (i.e., first vs. recurrent 556 

episode, antidepressant medication-free vs. antidepressant users, remitted vs. currently depressed 557 

patients, or early vs. adult vs. late age of onset of depression). Brain-PAD was positive in all MDD 558 

subgroups, and there were no negative associations with any clinical characteristics.  559 

 560 

 561 

MDD patients vs. Controls N b (p value) SE Cohen's d SE 95% CI 

First episode MDD 1,080 1.15 (0.0001) 0.28 0.12 0.04 0.05-0.19 

Recurrent episode MDD 1,940 0.73 (0.0027) 0.24 0.08 0.03 0.02-0.14 

Current MDD 2,179 1.23 (<0.0001) 0.26 0.13 0.03 0.07-0.19 

Remitted MDD 344 1.24 (0.0146) 0.51 0.11 0.06 -0.006-0.22 

AD medication-free 1,753 0.84 (0.0006) 0.25 0.09 0.03 0.03-0.15 

AD user 1,366 0.85 (0.0020) 0.28 0.09 0.03 0.02-0.15 

All MDD patients 3,211 0.90 (<0.0001) 0.21 0.12 0.03 0.06-0.17 

Early onset MDD 1,400 0.85 (0.0005) 0.24 0.10 0.03 0.03-0.16 

Adult onset MDD 1,420 0.54 (0.0244) 0.24 0.06 0.03 -0.002-0.13 

Late onset MDD 125 1.73 (0.0091) 0.66 0.17 0.09 -0.01-0.35 

Table 1: Clinical characteristics and brain aging. Positive brain-PAD scores (predicted brain age - 562 
chronological age) were found for all subgroups of patients with major depressive disorder (MDD) 563 
compared to controls (N=2,256). b=regression coefficient; this indicates the average brain-PAD difference 564 
between MDD patients and controls in years. AD, Antidepressant.  565 
 566 

 567 

 568 

 569 
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Increased brain-PAD is associated with greater depressive symptom severity 570 

There was an association with depression severity at the time of scanning within the MDD sample, 571 

illustrated by higher brain-PAD in individuals with more severe self-reported depressive symptomatology 572 

(b=0.05, p=0.004) as measured in N=1,538 patients who completed the BDI-II. We were not able to 573 

confirm this, however, in N=1,905 depressed individuals who were assessed using the HDRS-17 574 

clinician-based questionnaire (b=0.003, p=0.90).   575 

 576 

Discussion 577 

 578 

Using a brain age algorithm based on commonly used brain measures derived from T1-weighted scans 579 

from over 3,500 males and 4,900 females, we found subtle age-associated gray matter differences in 580 

major depressive disorder (MDD). At the group level, the brain age model predicted chronological age in 581 

controls and MDD patients from 77 brain morphometric features, and patients had, on average, a 0.90 582 

years greater discrepancy between their predicted and actual age compared to control participants. 583 

Strongest effects were observed in late-life onset of depression (+1.7y, d=0.17), currently depressed 584 

(+1.2y, d=0.13), and first episode MDD (+1.2y, d=0.12) patients, compared to controls. Finally, each one-585 

point increase in self-reported symptom severity score at study inclusion added, on average, 18 days of 586 

brain aging, potentially underscoring the importance of reducing the number of symptoms in the treatment 587 

of depression.  588 

 589 

The positive association between brain aging and symptom severity, measured with the self-report BDI-II 590 

questionnaire, was not confirmed using the clinician-based HDRS-17. Post-hoc analyses in overlapping 591 

samples with both scores (N=1,302) yielded a significant correlation between them (r=0.67, p<0.0001), 592 

yet the same discrepant association with brain-PAD. This could perhaps be explained by the differential 593 

proportion of items emphasizing cognitive and affective (BDI-II) or somatic and behavioral dimensions 594 

(HDRS-17).29 Alternatively, brain age may be more sensitive to subjective (BDI) than to objectively 595 

(HDRS-17) rated experiences, consistent with the finding of Kwak and colleagues (2018) that the 596 

subjective experience of aging was closely related to predicted brain age.30 However, it is important to 597 
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bear in mind the small effect size (b=0.05). Nonetheless, positive associations with current depressive 598 

symptom severity have been previously reported with more advanced levels of biological aging, as 599 

indicated by shorter telomere length31 and increased epigenetic aging.19  600 

 601 

This study showed relatively largest effect size of advanced brain aging in patients with a late-life onset of 602 

depression (>55 years old) compared to controls. However, we did not find significant differences 603 

between early vs. adult vs. late onset of depression groups. Additionally, no differences between remitted 604 

(N=344) and acute patients (N=2,179) were found, leading to the speculation that an initial brain insult 605 

during a first episode of depression or preceding clinical disease onset may leave a lasting impact even 606 

after remission. To date, the reversibility of gray matter alterations in MDD over time remains rather 607 

elusive due to the lack of reliable longitudinal studies.32 Yet, cross-sectional studies show that “younger” 608 

appearing brains are seen in groups of individuals with greater physical activity,33 long-term meditation 609 

practitioners,11 and amateur musicians,34 suggesting that brain age might be a modifiable metric. 610 

Moreover, one study suggests dynamic potential by showing that in healthy individuals brain-PAD was 611 

temporarily reduced by 1.1 years due to the probable acute anti-inflammatory effects of ibuprofen.35 In 612 

this study, there was no detectable effect of antidepressant use on brain aging within MDD individuals. As 613 

antidepressants are suggested to exert a neuroprotective effect, for example by promoting brain-derived 614 

neurotrophic factor (BDNF),36 it remains to be elucidated how adaptable brain age is in response to 615 

pharmacotherapy. However, the cross-sectional nature of the current study and the lack of detailed 616 

information on lifetime use, dosage and duration of use of antidepressants, do not allow us to draw any 617 

conclusions regarding direct effects of antidepressants on brain aging. Thus, longitudinal research and 618 

randomized controlled intervention studies are needed to develop an understanding of how reversible 619 

brain aging is after remission of MDD and how modifiable in response to pharmacology, but also to non-620 

pharmacological strategies (e.g., psychological, exercise and/or nutritional interventions), as seen in other 621 

biological age indicators.37–39  622 

 623 

Further, the currently observed effect size of Cohen’s d=0.12 with regard to brain aging is consistent with 624 

previously seen modest structural brain differences in MDD. Earlier work from the ENIGMA MDD working 625 
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group also showed small subcortical (hippocampus; d=-0.14), and small to moderate cortical reductions 626 

(e.g. left medial orbitofrontal cortex thickness in adults, d=-0.13 and right lingual gyrus surface area in 627 

adolescents, d=-0.42) in patients compared to controls.15,16 Here, we particularly find strong widespread 628 

significant negative associations between brain aging and cortical thickness, and comparably weaker 629 

associations with surface area and subcortical volume measures (figure 4), consistent with literature on 630 

age-related structural brain changes in adolescents40 and adults.41 We also visualized these associations 631 

separately for controls and MDD patients, but findings were similar and suggest comparable spatial brain 632 

aging patterns in both groups (appendix). Notably, we did not include a spatial weight map of our brain 633 

age model, as the weights (although linear) are obtained from a multivariable model, and do not allow for 634 

a straightforward interpretation of the importance of the brain regions contributing to the aging pattern.  635 

 636 

Our findings were in contrast to earlier work showing a +4.0 years of brain aging in a smaller sample of 637 

MDD patients (N=104; 18-65 years).6 However, a recent preliminary study in 211 MDD patients (18-71 638 

years) found a similar effect size to ours, albeit non-significant (d=0.10, p=0.33).26 In the latter study, 639 

brain-PAD was derived using a brain age model trained on >12,000 healthy individuals (vs. the 800 in the 640 

Koutsouleris study6 vs. >1,100 in this study), emphasizing the relevance of sample size for both training 641 

and test samples for sensitivity to detect reliable, yet subtle, effects. Similarly, with respect to reaching 642 

statistical significance, large sample sizes are needed to detect small effect sizes commonly found with 643 

biological age indicators,18,19,31 but also other markers (e.g. BDNF, cortisol, oxidative stress)42–44 in 644 

depression research. A major strength of this study is, therefore, the mega-analytic approach of pooling 645 

harmonized data from many heterogeneous sites, making predictive models less susceptible to 646 

overfitting45 and more generalizable to other populations.46  647 

 648 

Inflammation may be a common biological mechanism between MDD and brain aging. Neuroimmune 649 

mechanisms (e.g. pro-inflammatory cytokines) influence biological processes (e.g. synaptic plasticity), 650 

and inflammatory biomarkers are commonly dysregulated in depression.47 Both cerebrospinal fluid and 651 

peripheral blood interleukin (IL)-6 levels are elevated in MDD,48 and increased IL-6 expression may affect 652 

brain morphology through neurodegenerative processes.49 Moreover, work by Kakeda and colleagues 653 
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(2018) demonstrated a significant inverse relationship between IL-6 levels and surface-based cortical 654 

thickness and hippocampal subfields in medication-free, first-episode MDD patients.50 This accords with 655 

the current observation of increased brain-PAD in medication-free and first-episode patients, compared to 656 

controls, perhaps suggesting that neuroimmune mechanisms may be chief candidates involved in the 657 

brain morphology alterations, also in the early stage of illness. Further, the age-related structural 658 

alterations in MDD may also be explained by shared underlying (epi)genetic mechanisms involved in 659 

brain development and plasticity (thereby influencing brain structure) and psychiatric illness.51 For 660 

instance, Aberg and colleagues (2018) showed that a significant portion of the genes represented in 661 

overlapping blood-brain methylome-wide association findings for MDD were important for brain 662 

development, such as induction of synaptic plasticity by BDNF.52  663 

 664 

Our current findings in MDD show lower brain aging than previously observed in schizophrenia (SCZ) 665 

(brain-PAD ranges from +2.6 - +5.5y, d=0.64)6,22, even in early stages of first episode SCZ.25 Inconsistent 666 

findings are reported in bipolar disorder (BD), with “younger” brain age23 or no differences compared to 667 

controls.25 However, more studies with larger sample sizes are needed to confirm brain aging in these 668 

psychiatric disorders - endeavors currently pursued by other ENIGMA psychiatric disease working groups 669 

using the same brain age models, which will allow future cross-disorder comparisons between brain-PAD 670 

in e.g. MDD, BD and SCZ.  671 

 672 

While our results are generally consistent with existing literature on advanced or premature biological 673 

aging and major depression using other biological indicators,18 it is important to critically consider the 674 

current findings and note their limitations. First, limited information was available on clinical 675 

characterization and brain-PAD could not be compared against somatic health outcomes here. Second, 676 

given the relatively crude and limited number of gray matter features, the best MAE that could be 677 

achieved was 6.9 years, compared to ~4.9 years accomplished by other brain age predictors (e.g., those 678 

based on spatial images with high dimensional features that may also include white matter).12 However, 679 

an advantage to using FreeSurfer data over voxelwise methods is that the fewer dimensions render our 680 

models less prone to overfitting and more flexible in exploring the use of different machines and kernels 681 
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(appendix). Furthermore, pooling data from many scanning sites comes at the cost of increasing 682 

heterogeneity of MRI data and other sample specifics. However, withstanding the latter limitation, models 683 

are therefore consequently tested on “ecologically valid” samples, bolstering confidence in their 684 

deployability and shareability.53 Finally, the large within-group variance regarding the brain-PAD outcome 685 

in both controls and MDD (figure 3), compared to the small between-group variance, renders the use of 686 

this brain aging indicator for discriminating patients and controls at the individual level difficult. As many of 687 

the MDD patients do not show advanced brain aging compared to controls, the clinical significance of the 688 

observed higher brain-PAD in MDD patients in this study may be limited. Yet, interindividual differences 689 

highlight the importance of studying the individual, rather than the average patient54 and provide the 690 

opportunity to elucidate whether a subgroup of patients with high brain-PAD may be at risk for worse 691 

psychiatric, neurologic, and somatic health outcomes. Local sites that participated in this study with 692 

clinical phenotyping and longitudinal information on mental and somatic health outcomes (e.g., genomic 693 

variation, omics profiles, comorbidities, lifestyle, inflammation, oxidative stress, chronic diseases) will 694 

allow further evaluation of the predictive value of the brain-PAD estimates. This is expected to promote 695 

continued growth of knowledge in pursuance of useful clinical applications.  696 

 697 

In conclusion, compared to controls, both male and female MDD patients show advanced brain aging, 698 

with a subtle association with current symptom severity. This is consistent with other studies of biological 699 

aging indicators in MDD at cellular and molecular levels of analysis (i.e., telomere length and epigenetic 700 

age). The deviation of brain metrics from normative aging trajectories in MDD may contribute to increased 701 

risk for mortality and aging-related diseases commonly seen in MDD. However, the substantial within-702 

group variance and overlap between groups signify that more (longitudinal) work including in-depth 703 

clinical characterization and more precise biological age predictor systems are needed to elucidate 704 

whether brain age indicators can be clinically useful in MDD. Future studies may use our current ENIGMA 705 

brain age prediction model to associate brain-PAD with treatment response and other available 706 

information on longitudinal mental and somatic health outcomes, other aging indicators, and incidence 707 

and/or prevalence of other chronic diseases in their local samples in pursuance of greater clinical 708 

application.  709 
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