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Abstract. The human brain may be considered as a genus-0 shape,
topologically equivalent to a sphere. Various methods have been used in
the past to transform the brain surface to that of a sphere using harmonic
energy minimization methods used for cortical surface matching. How-
ever, very few methods have studied volumetric parameterization of the
brain using a spherical embedding. Volumetric parameterization is typi-
cally used for complicated geometric problems like shape matching, mor-
phing and isogeometric analysis. Using conformal mapping techniques,
we can establish a bijective mapping between the brain and the topolog-
ically equivalent sphere. Our hypothesis is that shape analysis problems
are simplified when the shape is defined in an intrinsic coordinate sys-
tem. Our goal is to establish such a coordinate system for the brain. The
efficacy of the method is demonstrated with a white matter clustering
problem. Initial results show promise for future investigation in these pa-
rameterization technique and its application to other problems related
to computational anatomy like registration and segmentation.
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1 Introduction

Shape parameterization is a well researched area in the computational geometry
community [1,2]. In computational anatomy, many algorithms have been devoted
to surface parameterization [3–6] and its applications to cortical surface matching
and registration [7]. Shi et. al [8] used conformal mapping between the cortical
surfaces for cortical label fusion. Brain Transfer [9] is a recent method suggested
by Lombaert et. al is used to to find correspondences between cortical surface
across subjects as well as functional areas. Surface parameterization may be
sufficient for analyzing surface geometry. However, it falls short when there is
significant information contained inside the shape under consideration (brain).
Here we developed a parameterization technique that parameterizes the entire
volume of the brain and every structure contained in it. Thus, cortical surface
parameterization is in fact a byproduct of this method.

Following work by Wang, Yau and colleagues [10] using "sphere carving" to
harmonically map the brain to a sphere, a bijective mapping between the brain
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and the topologically equivalent sphere can be established using a 3D harmonic
function. Such a parameterization gives us a coordinate system intrinsic to the
brain shape, which may simplify various sub-problems related to computational
anatomy such as registration, segmentation and automated clustering of white
matter fibers. We will show a potential application of this parameterization
technique, to assist with automated clustering of white matter fibers.

White matter fibers serve as neural pathways that connect different parts of
the brain. Diffusion weighted imaging (DWI) and tractography are used to study
the white matter organization in the brain. Clustering the white matter fibers
is an important step towards statistical analyses. One commonly used cluster-
ing method [11] uses manual ROI delineation on the FA images. These regions
can be used to seed whole-brain fiber tractography, which is then grouped into
white matter bundles using spectral clustering. One method used Hausdorff’s dis-
tance [12] as a distance metric between two fibers. Another more recent method
for fiber clustering was proposed by [13]. In this method, each fiber is repre-
sented using Gaussian mixture models followed by a hierarchical total Bregman
soft clustering. The authors [14] provide a more complete overview of different
clustering techniques.

In this paper, we use the proposed conformal mapping technique to param-
terize the white matter tracks. We then use a hierarchical spectral clustering
approach to classify a given set of tracks into individual anatomically relevant
fiber bundles. The proposed method does not rely on any tractography atlas or
region of interest (ROI) information. The accuracy of the method is compared
with manual clustering results.

2 Conformal Mapping: A Heat Transfer Analogy

To understand the volumetric parameterization problem addressed in this paper,
we draw an analogy between our problem and the heat transfer problem in solid
bodies. For the purpose of explanation, consider a solid body is maintained at a
constant high temperature on the surface and at another point inside the brain
at a constant low temperature. At steady state a thermal gradient will be set up
between the surface and the center with different layers of isothermal surfaces.
The heat from the high temperature surface is conducted towards the center
through heat-flow lines. These heat-flow lines intersect the isothermal surfaces
at right angles. We use this property to define a coordinate system for the whole
brain. We refer to the fixed low temperature point as the shapecenter and the
temperature field as φ.

3 Harmonic Function

The harmonic function is a C2 continuous function that satisfies Laplace’s equa-
tion. It is used to establish a bijective mapping between the brain and the topo-
logically equivalent spherical shape. If φ : U→Rn, where U⊆Rn is some domain
and φ is some function defined over U , the function φ is harmonic if its Laplacian
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vanishes over U , i.e., ∇2φ = 0. In terms of Cartesian coordinate system, we can
write

∇2φ =
∑n

i=1

∂2φ

∂2xi
= 0 (1)

where xi is the ith Cartesian coordinate and n is the number of dimensions of the
shape under study (here, 3). The harmonic function has two properties called
the mean value and the maximum principle property, which are important for
the parameterization problem being discussed.

3.1 Mean Value property

If a ball B(x, r) with center x and radius r is completely contained within the
domain under study, then the value of the harmonic function φ(x) is given by
the average values of the function over the surface of the sphere. This average
value is also equal to the average values of φ inside the sphere.

3.2 Maximum principle

According to the maximum principle, the harmonic function φ cannot have local
extrema within the domain U . The Laplacian of the harmonic functions should
be zero by definition. For a local extremum to exist all the components of the
second order partial derivatives of the function should have the same sign. If all
of them have the same sign, their sum will never be zero and thus they will never
be able to satisfy Laplace’s equation.

4 Algorithm

For the parameterization method, the volume generated by the fractional anisotropy
(FA) mask is used. Image voxels were classified as either boundary surface points
or internal points. For every subject the inferior end of the fornix on the mid-
line was located manually and designated as the "shape center". In the future,
more automated approach towards choosing the same will be investigated and
adopted.

4.1 Boundary Conditions

We apply the Dirchlet boundary conditions for the shapecenter and the boundary
surface, i.e., we fix the value of the function φ on all the boundary nodes and
the shapecenter to 1 and 0 respectively. All the remaining points are assigned
random values between 0 and 1 as the initial condition.
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4.2 Potential Computation

An iterative finite difference scheme is used to solve the Laplace equations. If
φ(x, y, z) is a harmonic function, its second derivative is computed using the
Taylor’s series expansion.

∂2φ

∂x2
=
φ(xi−1, yi, zi)− 2φ(xi, yi, zi) + φ(xi+1, yi, zi)

h2
(2)

∂2φ

∂y2
=
φ(xi, yi−1, zi)− 2φ(xi, yi, zi) + φ(xi, yi+1, zi)

k2
(3)

∂2φ

∂z2
=
φ(xi, yi, zi−1)− 2φ(xi, yi, zi) + φ(xi, yi, zi+1)

l2
(4)

where h, k and l are the step sizes in the x, y and z directions respectively. Using
the Laplace equation from 1 we have

φ(xi, yi, zi) =
φ(xi+1, yi, zi) + φ(xi−1, yi, zi)

6h2

+
φ(xi, yi−1, zi) + φ(xi, yi+1, zi)

6k2
+
φ(xi, yi, zi−1) + φ(xi, yi, zi+1)

6l2

The above potential values are computed until the maximum difference between
two successive iterations is below a certain threshold ζ. Generally, ζ is chosen to
be 10−12.

4.3 Computing heat-flow lines

Streamlines or the heat flow lines are orthogonal to the isothermal (equipo-
tential) surfaces. Each of the streamlines starts from the boundary points on
the brain surface and progresses towards the designated shapecenter. Each of
these streamlines approaches the shapecenter at unique angle(s), which remain
constant along the streamline. This property is endowed by construction. The
streamlines are computed by solving the following differential equation,

∂X

∂t
= −η∇φ[X(t)] (5)

where X = [x, y, z]T is the coordinate vector and η is the normalization con-
stant. MATLAB’s (version R2014b) ode23 routine is used to solve the system
of differential equations. The differential equation solver requires the potential
values at the non-grid points within the domain U . The intermediate values are
interpolated from the neighboring grid points using a local bilinear fitting model
as,

φ(x, y, z) = p1xyz + p2xy + p3yz + p4zx+ p5x+ p6y + p7z + p8 (6)

where p′is are constants. Eight neighborhood grid points are used to calculate
the p′is and these are used to interpolate the φ at a non-grid point using the
above equation.
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Fig. 1. Left: 3D view of different equipotential surfaces are shown. The heat-flow lines
emanating from the surface approach the shapecenter at unique polar and azimuthal
angles. These angles remain constant along the streamlines. intersect the surfaces at
right angles. Right: The white matter fibers to be classified into different groups.

4.4 Parameterizing the Brain

Each streamline originating from each of the boundary points approaches the
shapecenter at a unique angle. These angles remain constant along the stream-
lines. In case of three dimensional objects the angle of approach is characterized
by the elevation (θ) and the azimuthal (ψ) angles. The vector between the shape-
center and the end point of the streamline is calculated. The angles are calculated
using the Cartesian to spherical coordinate transformation

ψ = atan2(y, x); θ = atan2(
√
x2 + y2, z) (7)

The streamlines intersect the equipotential surfaces at right angles (see figure
1). Each point of intersection generates a tuple [φ, θ, ψ]T for the corresponding
Cartesian coordinates [x, y, z]T .

5 Mapping the White Matter Fibers

After the whole brain is parameterized as mentioned above, each fiber tract is
mapped to the new coordinate system, i.e., in the spherical space. At this stage,
we have a bijective mapping between the Cartesian coordinates of every voxel
in the brain and the newly computed coordinate system. A KD-tree structure
is built using the native brain coordinates for φ, θ and ψ. For every point on
the fiber streamline, the algorithm searches for ten neighborhood points and
computes a weighted average to get the corresponding coordinate in the target
domain. This process establishes the mapping of fibers in the target domain.
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6 Clustering White Matter Fibers

6.1 Tracking white matter fibers

Data was obtained from Alzheimer’s Disease Neuorimaging Initiative for the De-
partment of Defense (ADNI-DoD). For each of the DTI images, 46 volumes were
acquired with 5 T2 weighted B0 volumes and 41 diffusion-weighted volumes with
voxel size of 1.36 × 1.36 × 2.7 mm3. The scans were acquired using a GE 3.0T
scanner, using echo planar imaging with parameters: TR/TE = 9050/62 ms. Im-
ages were corrected for eddy-current distortions and skull-stripped. The diffusion
gradient vectors are rotated based on the matrix transformation resulting from
eddy-current correction. Whole-brain tractography was performed with Camino
(http://cmic.cs.ucl.ac.uk/camino/), an open source software package that uses
either streamline or probabilistic methods to reconstruct fiber paths. We per-
formed fiber a probabilistic algorithm, called the ‘Probabilistic Index of Con-
nectivity’ (PICo) in Camino [15]. Seed points were chosen at those voxels whose
FA values were greater than 0.2. Monte Carlo simulation was used to generate
fibers proceeding from the seed points throughout the entire brain [16]. Stream-
line fiber tracing followed the voxel-wise PDF profile with the Euler interpolation
method for 7 iterations per each seed point. The maximum fiber turning angle
was set to 60 degree/voxel, and tracing stopped at any voxel whose FA was less
than 0.2.

For the purpose of comparison against the ground truth, manual labeling
was performed by experts in neuroanatomy. Essentially, the FA images of these
subjects were registered to a single-subject template in the ICBM-152 space
called the “Type II Eve Atlas” (a 32-year-old healthy female) [17]. The entire
brain of the “Eve” template was parcellated using 130 bilateral ROIs [18]. The
labeled template ROIs were re-assigned to both subjects by warping them with
the deformation fields generated by Advanced Neuroimaging Tools (ANTs) [19].
Each tract was manually edited to remove visible outliers. For each tract, there
is a certain set of ROIs that it is intersects – a fiber must traverse all the required
ROIs for a given tract to be considered, otherwise the fiber was discarded.

6.2 Unsupervised clustering of white matter fibers

Various atlas based fiber clustering techniques are being used widely [20, 21].
However, in our knowledge a completely automated fiber clustering method is
non-existent. The authors in [11] claim that the presented method is automatic.
However, the method requires manual region of interest labeling for seeding the
fiber tractography algorithms. Manual delineation can be a time consuming and
laborious process, and does not provide a fully automated method. Furthermore,
the robustness of the clustering algorithm under a whole brain tractography can
be variabled depending on the skill and expertise of the labeler.

Spectral Clustering is one of the widely used unsupervised clustering meth-
ods. The details of the method are available in [22, 23]. A spectral clustering
method requires a similarity criterion (or a distance metric) to be defined. This
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distance metric is used to compare all the N fibers with each other to create
the affinity matrix of size N×N . The idea behind spectral clustering is to ap-
proximate the affinity matrix based on its largest eigenvalues. If k eigenvalues
are chosen, it implies that the data is distributed in a space spanned by the
corresponding k eigenvectors. Here we choose k as the same as expected number
of clusters.

Before clustering can be performed on the white matter tracts, the fiber tracts
need to pre-processed. These pre-processing steps are crucial for good clustering
results. All the white matter fibers are reparameterized using the arc length to
contain the same number of points. The resampled tracks are mapped into the
spherical domain as mentioned in section 5. At this point, for each Cartesian
coordinate [x, y, z] on the track we have an equivalent coordinate [φ, θ, ψ] in the
spherical domain. The distance metric (dij) used for constructing the affinity
matrix is defined as sum of squared differences on the new mapped coordinates.
Thus, if i and j are two fibers and N is the total number of points in a track.

dij =

N∑
k=1

(pki − pkj )2

where pki is one of the coordinates, i.e., φ, θ or ψ of the kth point in the fiber i.
The hierarchical clustering is performed in this set of parameterized coordinates.
The steps involved are enumerated as follows:

1. The mid-sagittal plane is located using the fractional anisotropy (FA) image
and the white matter fibers are separated into the left and right hemispheres.

2. Corpus callosum is contained in both the hemispheres. Thus, it can be seg-
mented by performing a logical AND operation on the two sets of fiber tracks
obtained in the previous step.

3. An estimated desired number of clusters is provided by the user.
4. Spectral clustering is performed on φ coordinates of the tracks.
5. The mean variance of each of the clusters obtained is calculated. It is under-

stood that if a group contains only one cluster, the mean variance will be
low (typically < 40).

6. The clusters with variance above the desired threshold is inspected and spec-
tral clustering is performed again using the azimuthal angles (θ) of the tracks.

7. The previous step is repeated again and if there are mis-classified tracks
another clustering is performed using the elevation angle ψ.

8. Because of the hierarchical nature of the clustering, we will generally end up
with over-classification, i.e., we get more groups of fibers than desired.

9. The over classified clusters are merged. Each cluster is merged with those of
the remaining ones and the resulting variance is calculated. If the variance
is lower than the threshold, the clusters are merged. The process continues
as long as there are more clusters than desired by the user.

The steps 4-7 in the algorithm is schematically represented in figure 2. Similar
process is repeated for the right hemisphere.
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Fig. 2. The different steps in the hierarchical clustering process (steps 4-7) are shown.
V represents the mean intra-cluster variance and Vt represents the variance threshold.
Cluster 1, 2 and 3 represents the clusters obtained at each step of the process.

6.3 Results of clustering

In figure 3, we show the results of the proposed hierarchical clustering. The left
column shows the results of first level of clustering, i.e.,with r co-ordinate. The
tracks are overlayed on the corresponding FA image for anatomical reference. The
variance of the cluster is mentioned below each panel. As expected, we found that
the variance of the clusters containing a single group is comparatively lower than
the ones which contained more than one groups. The groups with variance higher
than 40 (threshold) were re-clustered as shown but with different coordinates
until the variance is lower than the variance threshold. At this point we do
have more sub-clusters than expected. We follow an agglomerative approach
for combining the redundant clusters. The hierarchical nature of the method
makes the clustering process tractable. For the purpose of validation, a ground
truth data set was generated using manual labeling. A comparison between the
proposed clustering method and the traditional spectral clustering method using
Hausdroff distance as metric is shown. When compared to the ground truth the
proposed method is able to retrieve all the fiber bundles as see in figure 4.

7 Conclusion and Future Work

In this paper we proposed a novel volumetric parameterization technique for
parameterizing the brain to a sphere. Unlike prior methods which generally rely
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Fig. 3. The left column shows the result of clustering based on the φ coordinate. In the
second column, two of the fiber bundles can be further classified. A second and third
level of clustering is performed based of the azimuthal θ and polar ψ angles. At this
stage, we have some over classified bundles as seen in the last column. The bundles
with the combined variance less than a user defined threshold are combined.

on surface parameterization, the method presented in this paper parameterizes
the whole brain, following early work by [10]. This method may be useful for
developing novel shape based-registration methods, mapping regions of inter-
est, performing brain connectivity analysis and white matter fiber clustering.
We have also shown a potential use of the method in clustering white matter
tracts. The presented clustering method does not require any ROI based seeding
or image registration. The fiber tractography as well as the clustering was per-
formed in the native space of diffusion acquisition. In the present implementation
of the method the shape-center is chosen manually. However, in the future the
shapecenter can be chosen automatically, preferably at the anterior or posterior
commissure and can be located automatically using tools such as FreeSurfer. We
compared our results with spectral clustering methods using Hausdroff distance
and showed that the proposed method out-performs the former. The method has
to be tested for robustness against noisy data. In the future, we would like to
use the method for statistical analysis on large datasets for comparing fiber tract
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Fig. 4. A comparison between the clustering methods. The manual segmentation is
shown in the right most column. The left and the right columns show spectral clustering
using the Hausdroff distance and the proposed method respectively.

geometries. We believe that, a method which solely relies on the subject data
and not on any atlas will be particularly useful for clustering white matter fibers
for surgical purposes and in subject with significant white matter deformities
that cannot be represented in the white matter atlas.
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