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Materials and Methods 

Imaging 

Measures of cortical surface area (SA) and thickness (TH) were derived from in vivo whole brain 

T1-weighted magnetic resonance imaging (MRI) scans using FreeSurfer MRI processing software 

(1) (table S3). SA and TH were quantified for each subject within 34 distinct gyral-defined regions 

in each brain hemisphere according to the Desikan-Killiany atlas (10) (Fig. 1A). SA was measured 

at the grey-white matter boundary. TH was measured as the average distance between the white 

matter and pial surfaces. The total SA and average TH of each hemisphere was computed 

separately. High test-retest correlations have been previously reported for all measures with the 

exception of the frontal and temporal poles (7). Image processing and quality control were 

implemented at the cohort level following detailed, harmonized protocols. 

 

Site analysts visually inspected the 34 bilateral cortical Desikan-Killiany atlas segmentations for 

each subject. Visual inspection was conducted to assess extraction of the cortical grey matter 

ribbon, to identify regional boundary errors on the cortical surface, and ensure the accuracy of 

anatomical labels. Inspection was slice by slice on an orthogonal view, as well as on the external 

surface view. Regions marked as “failed segmentations” were excluded from analyses. SA and TH 

estimates beyond 2.698 SD from the mean were flagged in order to be more carefully inspected 

by the respective site analysts. A quantitative assessment of quality was not applied; subjects or 

regions were marked either as acceptable or not by a human rater. As this was a binary “pass” or 

“fail” flag for each region, no additional metrics were added to the statistical analysis at the site 

level. For sites that removed subjects for only the region that failed, the number of subjects 

available varied across regions. For sites that removed subjects entirely for regional fails, the total 

number of subjects available was the same as for all regions. We also note that some cohorts 

removed poor quality scans from their database, so for some cohorts the number of quality control 

issues may be limited. We include the percent of regional data available at the cohort-level in table 

S3. The protocols that were used for the imaging quality control are available online from the 

ENIGMA website (http://enigma.ini.usc.edu/protocols/imaging-protocols). 

 

Phenotype distributions for all traits in all cohorts were inspected centrally prior to meta-analysis 

(fig. S11). Any cohort where the phenotypic distribution for a given trait showed deviation from 

expectations that could not be resolved through re-analysis or outlier inspection were excluded 

from analyses of that trait. 

 

Genome-wide association analyses 

At each site, genotypes were imputed using either the 1000 Genomes Project (70) or Haplotype 

Reference Consortium (71) references (table S4). To ensure consistency in the correction for 

ancestry and stability of the correction given the relatively small sample sizes, each cohort also 

ran the same multidimensional scaling (MDS) analysis protocol in which the data from the 

HapMap 3 populations were merged with the site level data and MDS components were calculated 

across this combined data set. Within each cohort, genome-wide association (GWAS) was 

conducted using an additive model including covariates to control for the effects of age, age2, sex, 

sex-by-age and age2 interactions, ancestry (the first four MDS components), diagnostic status 

(when the cohort followed a case-control design), and dummy variables for scanner (when multiple 

scanners were used at the same site).  
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The primary GWAS of regional measures included the global measure of SA or TH as an 

additional covariate, to test for genetic influences specific to each region. However, to aid 

interpretation, the regional GWAS were also run without controlling for global measures. Cohort 

level GWAS results underwent quality control (excluding variants with an imputation R2 ≤ 0.5 and 

MAF ≤ 0.005). Across all cohorts, for each phenotype, GWAS summary plots (Manhattan and QQ 

plots) were visually inspected by the central analysis group; if a given trait showed deviation from 

expectations that could not be resolved through re-analysis, then that cohort was excluded from 

analyses of that trait. 

 

Meta-analysis 

The initial meta-analysis was conducted on all of the ENIGMA European cohorts with genome-

wide imputed data, and was then meta-analyzed with the UK Biobank European participants to 

give the principal results. For replication, we took forward the significant variants from the 

principal results and meta-analyzed them with an additional ENIGMA cohort and results from the 

CHARGE consortium. We also extracted these variants from a meta-analysis of non-European 

cohorts to examine generalization of effects across ancestry. Cohort information is provided in 

table S2. All meta-analyses were conducted using METAL (63). The results of the meta-analyses 

are summarized in table S5. For the initial and principal meta-analyses we used standard error 

weighted meta-analyses. In the replication steps we used sample size weighted meta-analyses, in 

order to include results from the CHARGE consortium for which only sample size weighted results 

were available. An additional ENIGMA cohort was also included in the sample size weighted 

meta-analysis because the GWAS was conducted using a program that provided results on an 

inverse normalized scale. For each meta-analysis, the results were quality controlled, removing 

strand ambiguous SNPs and INDELs where the effect allele frequency crossed 0.5, and (for the 

initial meta-analysis) variants where the total sample size was < 10,000. Independent loci were 

identified by clumping significant loci in PLINK (72), with thresholds of 1 Mb and r2 < 0.2. For 

the chromosome 17 inversion region this was increased to 10 Mb. For clumping, a random sample 

of 5,000 unrelated individuals (plink 1.90 genetic relatedness ≤ 0.025) of European ancestry from 

the UK Biobank were used as an LD reference. 

 

Following Rietveld et al. (73), we estimated the variance explained R2 by each variant j as:  

𝑅𝑗
2 ≈

2𝑝𝑗𝑞𝑗 . �̂�𝑗
2

�̂�𝑦
2

 

where pj and qj are the minor and major allele frequencies, �̂�𝑗 is the estimated effect of the variant 

within the meta-analysis and �̂�𝑦
2 is the estimated variance of the trait (for which we used the pooled 

variance of the trait across all ENIGMA cohorts and UK Biobank; see table S1). To obtain beta 

and standard error estimates from the results from the sample size weighted meta-analyses reported 

in table S5 we used the following equations from Rietveld et al. (73): 

�̂�𝑗 ≈ 𝑧𝑗 ∙
�̂�𝑦

√𝑁𝑗 ∙ 2𝑝𝑗𝑞𝑗

 𝑎𝑛𝑑 𝑆𝐸(�̂�𝑗) ≡
𝑧𝑗

�̂�𝑗

  

Where zj is the Z-score and SE (�̂�𝑗) is the estimated standard effect of the variant within the meta-

analysis and N is the number of contributing alleles. 
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Multiple testing correction 

We analyzed 70 traits (total SA, average TH, and the SA and TH of 34 cortical regions averaged 

across right and left hemispheres). However, after accounting for the correlation between the traits 

in the UK Biobank (residuals correcting for sex, age, ancestry and global measures) using matrix 

spectral decomposition (12), the effective number of traits was estimated to be 60. Therefore, we 

applied the significance threshold of P ≤ 8.3 x 10-10 to correct for multiple testing in the GWAS 

meta-analysis results. Multiple testing corrections applied to each of the follow-up analyses are 

described below. 

 

Analyses of UK Biobank data 

Analyses of the UK Biobank cohort were conducted on the 2018 (version 3) imputed genotypes, 

imputed to the Haplotype Reference Consortium and merged UK10K and 1000 Genomes (phase 

3) panels. UK Biobank bulk imaging data were made available for 12,962 individuals under 

application #11559 in July 2017, with data from an additional 5,095 individuals made available in 

August 2019. We processed the raw MRI data using the ENIGMA protocols described above. 

Following processing, all images were visually inspected. Analyses of UK Biobank participants 

within 0.02 on the first and second MDS components of the European centroid were included in 

the meta-analyses of the European ancestry cohorts. Analyses of participants beyond this threshold 

were included in the meta-analysis of non-European ancestry cohorts.  

 

Gene-based association analyses 

We conducted genome-wide gene-based association analysis using the principal meta-analytic 

results. We used the 19,427 protein-coding genes from the NCBI 37.3 gene definitions as the basis 

for the gene-based association analysis using MAGMA (67). For each gene we selected all SNPs 

within exonic, intronic and untranslated regions as well as SNPs within 50 kb upstream and 

downstream of the gene. After SNP annotation, there were 18,048 genes that were covered by at 

least one SNP. Gene-based association tests were performed taking LD between SNPs into 

account. We applied a Bonferroni correction to account for multiple testing, adjusting for the 

number of genes tested as well as the effective number of traits tested (60 independent traits), 

setting the genome-wide threshold for significance at 4.5 x 10−8. These results are shown in table 

S6. 

 

Twin heritability 

Twin heritability was estimated in the ENIGMA Queensland Twin Imaging (QTIM) study of 

healthy adolescent and young adult twins and their siblings (N = 923; 157 MZ pairs, 194 DZ pairs, 

221 unpaired twins) using OpenMx (74) in R. Structural equation models were fitted to total SA, 

average TH, and the SA and TH of 34 cortical regions averaged across right and left hemispheres 

using full information maximum likelihood to decompose the variance into additive genetic and 

environmental factors. The models included a simultaneous means regression to adjust for effects 

of sex, linear and nonlinear age effects, interactions between age and sex, MRI acquisition 

orientation, and for the regional measures we analyzed a version with and one without the 

corresponding global measures. We performed analyses without controlling for global measures 

for completeness. The likelihood ratio test was used to select the best fitting most parsimonious 

model, which was a model explaining the phenotypic differences in variance by additive genetic 

factors and unique environmental factors (including measurement error). These results are shown 

in table S7. 
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Heritability due to common variants 

For each of the 70 traits, we used LD score regression (64, 65) to estimate the proportion of 

variance accounted for by common SNPs or SNP heritability (h2
SNP). These results are shown in 

table S7.  

 

Partitioned heritability 

Partitioned heritability analysis was used to estimate the percentage of heritability explained by 

annotated regions of the genome (66). Annotations were derived from either Epigenomics 

Roadmap (22) or a study of chromatin accessibility in mid-fetal brains (21). For analyses using 

Epigenomics Roadmap data, ChromHMM chromatin states (15 state model) were downloaded for 

available tissue types (http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). For 

each tissue, genomic regions comprising all active regulatory elements (TssA, TssAflnk, Enh, 

EnhG) within each tissue type were added as an additional annotation to the baseline model 

provided with the LDSC package (https://github.com/bulik/ldsc). A separate analysis was 

conducted by identifying if the same active regulatory elements that were specific to either fetal 

brain (combining annotations from BRN.FET.F and BRN.FET.M) or adult brain cortex 

(combining annotations from BRN.CING.GYR, BRN.INF.TMP, BRN.ANG.GYR, 

BRN.DL.PRFRNTL.CRTX). Those elements present in fetal brain showing no overlap with adult 

brain cortex were used as “fetal brain specific”. Conversely, those elements present in adult brain 

cortex showing no overlap with fetal brain were used as “adult brain specific”. These annotations 

were added separately to the baseline model. For analyses using chromatin accessibility in mid-

fetal brains, the genomic coordinates of peaks more accessible in the germinal zone than the 

cortical plate (GZ > CP) and peaks more accessible in the cortical plate than the germinal zone 

(CP > GZ) were added jointly to the baseline annotations. A separate analysis was conducted 

subsetting to chromatin accessibility peaks defined in fetal brain that showed evidence of 

regulating cell-type specifically expressed genes in mid-fetal development. Cell-type definitions 

and genes with cell-type specific expression (log2 fold change > 0.2 between cell-types, BH 

corrected P < 0.05, Expressed in 10% of cells in cluster) were acquired from previously published 

work (23). Peaks near the TSS of cell-type specific genes (promoter peaks) and those with 

significant chromatin accessibility correlation with promoter peaks were used as cell-type specific 

annotations. These annotations of all 16 cell-types were added to the baseline model. Partitioned 

heritability and the enrichment of heritability explained in these annotations was run using LD 

score regression (66). The significance of enrichment was corrected across all annotations 

displayed in each of the analyses using FDR correction (FDR ≤ 0.05) and the significance and 

enrichment scores were plotted (Fig. 2B–D, fig S6A–D). 

 

Genetic and phenotypic correlations and clustering of genetic correlations  

LD score regression (64) was also used to estimate genetic correlations between cortical regions 

and with global measures. These results are shown in table S14−15. Phenotypic correlations were 

calculated from the UK Biobank cohort (residuals correcting for sex, age, ancestry, and global 

brain measures). We used a threshold of P ≤ 8.3 x 10-4 (0.05/60) to correct for multiple testing in 

the genetic and phenotypic correlations shown in Fig. 3.  

 

To identify patterns of genetic correlations of SA and TH (both with and without correction for 

global measures), we used Mclust (75) for hierarchical cluster analysis, which uses expectation-

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://github.com/bulik/ldsc
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maximization to fit parameterized Gaussian mixture models to the data. The best-fitting model for 

number and shape of clusters was selected as the one with the largest Bayesian Information 

Criterion. These results are shown in fig. S9.  

 

Genetic correlations were calculated to determine if shared genetic influences contributed to both 

cortical structure and neuropsychiatric disorders or psychological traits. Summary statistics were 

downloaded from the following published genome-wide association studies: general cognitive 

function (54), insomnia (55), antisocial behavior (76), educational attainment (28), subjective well-

being (57), depressive symptoms (57), neuroticism (29), attention deficit hyperactivity disorder 

(ADHD; 56), autism (77), bipolar disorder (78), anorexia nervosa (79), major depressive disorder 

(58), obsessive compulsive disorder (80), post-traumatic stress disorder (PTSD; 81), schizophrenia 

(82), anxiety disorders (83), aggression (84), Alzheimer's disease (85), loneliness (86), cigarettes 

smoked per day (87), epilepsy (88), Parkinson's disease (27), and frontotemporal dementia (69). 

LD score regression was used to calculate genetic correlations (64). Significance was corrected for 

multiple comparisons using FDR across all genetic correlations with average TH and total SA, and 

significant associations were highlighted in Fig. 5A. To explore regional variability in those 

significant genetic correlations, genetic correlations were conducted between the trait and the 

cortical regions (without correcting for global measures) are depicted in Fig. 5B. 

 

Polygenic risk score analyses 

To examine the extent to which our analyses could predict SA and TH in an independent dataset, 

we derived polygenic risk scores (PRS) from the primary meta-analysis results. Using data from 

an additional 5,095 unrelated individuals of European ancestry from the UK Biobank who were 

unrelated to participants who contributed to the meta-analysis (plink 1.90 genetic relatedness ≤ 

0.025). The index variants used to weight the PRS were identified by clumping the meta-analytic 

results in plink 1.90 using an r2 threshold of 0.1 with a 1000 kb window using the genotypic data 

of the prediction cohort as a reference. Following checks for strand alignment, PRS were calculated 

using the probabilistic imputed genotype dosages to account for imputation uncertainty. PRS were 

calculated for P-value thresholds of P ≤ 5 x 10-8, 1 x 10-5, 0.001, 0.01, 0.05, 0.1, 0.5, 1. The 

proportion of variance accounted for by a given PRS was estimated by comparing the R2 of a linear 

regression analysis that included the PRS and the covariates that were included in the GWAS 

analyses to a corresponding analysis that only included the covariates (conducted in R lm). The 

results of these analyses are presented in table S7. 

 

Mendelian randomization and latent causal variant analyses 

We performed 2-sample Mendelian randomization (2SMR) and latent causal variant (LCV) 

analyses to investigate whether significant correlations detected by the analyses above could be 

driven by causal genetic relationships between an exposure (e.g., total surface area) and an 

outcome (e.g. the correlated traits). The 2SMR analyses were performed using MR-Base (59), 

which performs a series of MR and sensitivity analyses to evaluate evidence for causality and 

detect the presence of horizontal pleiotropy (where a SNP directly influences an outcome, violating 

the MR assumption that SNPs only influence the outcome through their effect on the exposure), 

and MR-PRESSO (89), which detects and then corrects for horizontal pleiotropy by removing 

SNPs with outlying effects on the outcome trait. For each exposure trait, we included only SNPs 

GWAS P-values < 5.0 x 10-8 which were clumped for LD (r2 < 0.01) to ensure only significantly 

exposure-associated, independent variants were included as the instrumental variables. SNP 
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effects were standardized prior to analysis. We conservatively set the threshold for significance at 

P = 3.13 x 10-3 (0.05/16 trait comparisons). Where there was significant evidence of SNP 

heterogeneity in effect sizes for outcome traits the analyses were re-run in MR-Base with the 

outlier SNPs removed as further sensitivity analyses to determine the extent to which the 

relationship between traits was influenced by the outlier SNPs. The results of the MR analyses are 

presented in table S18. We present the betas and their standard errors for the two associated 

quantitative traits in the main text following sensitivity analyses suggesting all included 

instruments (SNPs) were unbiased (59). Additionally, we show odds ratios and 95% confidence 

intervals reflecting risk per standard deviation increase in the relevant exposure calculated from 

the inverse variance weighted MR model result in table S18.  

 

A key assumption of MR is that the genetic variants included in the analysis are specific 

instruments for the exposure under investigation: false positive results can occur in the presence 

of genetic correlation if the correlation is driven by pleiotropy (19, 90). Additionally, the exposure 

trait (and also the outcome trait where a causal relationship exists) is likely to be affected by 

residual genetic variation that doesn’t surpass the genome-wide significance threshold. To 

overcome these potential limitations we also performed latent causal variable analyses using LCV-

Master (19). The LCV method mediates genetic correlation through the use of a latent variable 

that has a causal effect on each trait. The degree of causality of a trait (trait 1) on another (trait 2) 

is quantified using a genetic causality proportion (gcp) that ranges from -1 to 1, with gcp > abs(0.6) 

implying full or nearly full genetic causality (19). All LCV analyses were performed using 

genome-wide GWAS summary results (Z-scores) using the default settings. As LCV-Master 

includes tests for causality in both directions the threshold for significance for these analyses was 

set at P = 6.25 x 10-3 (0.05/8 trait comparisons). The LCV results are presented in table S19. 

 

Multivariate GWAS analysis 

We used TATES (42) to conduct two multivariate analyses: one for the 34 regional SA measures, 

and a separate analysis for the 34 regional TH measures. These analyses were run on the meta-

analytic results from the second phase of meta-analysis. Briefly, TATES combines the P-values 

from univariate GWAS while correcting for the phenotypic correlations between traits and does 

not require access to raw genotypic data (42). The power of TATES has been shown to be similar 

or greater than that of multivariate tests using raw data across a range of scenarios for analyses of 

20 or more traits (91). For these analyses, we used phenotypic correlations calculated from the UK 

Biobank cohort (residuals correcting for sex, age, ancestry, and global cortical measures). 

 

Gene-set enrichment analyses 

Gene-set enrichment analyses were performed on total SA and average TH as well as the 

multivariate GWAS results for SA and TH using DEPICT (25). Within DEPICT, groups of SNPs 

were assessed for enrichment in 14,462 gene-sets. These analyses were run using variants with P 

≤ 1.0 x 10-5. Gene-set enrichment analyses were considered significant if they survived FDR 

correction (q ≤ 0.05) (25). These results are shown in table S10. 

 

Functional annotation 

Potential functional impact was investigated for lead variants and their proxies (defined here as r2 

> 0.6 to the lead SNP) at each of the 369 loci nominally associated with global and regional SA 
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and TH using a number of publicly available data sources. The majority of the SNP annotations 

were as provided by FUMA (30) which annotates:  

● SNP location (e.g., genic/intergenic)  

● the potential for functional effects through predicted effects as determined by CADD (92) 

and Regulome (93)  

● expression quantitative trait (eQTL) effects. We considered eQTLs within cortical 

structures from GTEx v7 (94), the UK Brain Expression Consortium (95), the 

CommonMind Consortium (96), and PsychENCODE (97).  

● the presence of enhancers and promoters in SNP regions (RoadMap tissues E053, E073, 

E081, E082, E125)  

● chromatin state and interactions in numerous brain tissues (GEO GSE87112). We included 

data for dorsolateral prefrontal cortex and neural progenitor cells, PsychENCODE, and 

adult and fetal cortex (98). 

These data were used by FUMA to map coding and non-coding (e.g. lncRNA) genes to each lead 

SNP and high LD proxies based on an eQTL effect with FDR-corrected P-values ≤ 0.05 in cortical 

tissue and/or chromatin interactions between the region harboring the lead SNP and a gene 

promoter in a second chromosomal region (including interactions with an FDR correction ≤ 1 x 

10-6) (30). Default FUMA settings were used. In the main text we indicate the FDR values for 

significant eQTL effects (i.e. FDR Q ≤ 0.05: both the nominal P-values and the FDR-corrected 

values are provided in table S12). FDR values for adult eQTL data from GTEx reported in text as 

FDRGTEx were derived from beta distribution-adjusted empirical P-values of nominal P-values 

from t-tests of Pearson product-moment correlation coefficients that were FDR corrected using the 

Storey Tibshirani method (30, 94). FDR values for adult eQTL data from the CommonMind 

Consortium (CMC) reported in text as FDRCMC were derived from linear regression coefficient t-

tests that were FDR corrected and accessed by FUMA in Q-value bins (e.g. Q < 1.0 x 10-2). These 

bin values are reported as whole numbers by FUMA (e.g. the Q < 1.0 x 10-2 bin is reported as Q = 

9.0 x 10-3). We report the CMC bin value in the main text, although table S12 (FUMA “gene” 

output) reports the corresponding FUMA-assigned values. For rs1080066, we also investigated if 

it was reported as an eQTL in adult blood (99), the FDR value reported in text as FDRBIOSgenelevel 

was derived from meta-analytic Z-scores and FDR corrected against permuted data. Fetal eQTL 

data were taken from O’Brien et al (34). FDR values for fetal eQTLs reported in text as FDRFETAL 

were derived from nominal P-values from t-tests of Pearson product-moment correlation 

coefficients reported in the original paper that were FDR corrected for our significant loci using 

the Benjamini-Hochberg method. HaploReg (100) was used to annotate transcription factor 

binding across multiple tissues, and whether SNPs modified transcription factor binding motifs. 

The potential for a detrimental effect on protein function due to lead or proxy SNPs located within 

gene exons was investigated using SIFT and PolyPhen as reported by SNPNexus (40). 

 

In Fig. 4A we annotate the genomic context of rs1080066 and high LD proxies associated with 

additional traits, chromatin state in relevant tissues, and gene expression in pre- and post-natal 

brains. Chromatin state represents the degree to which 200 bp genomic regions are accessible for 

transcription. Around each of our associated loci chromatin state was annotated by FUMA (30) 

utilizing the core 15-state model (table S11). In Fig. 4A, genomic regions in three tissues/cells 

most relevant to our study (RoadMap E073 dorsolateral prefrontal cortex [Adult cortex], E081 

female fetal brain [Fetal brain], and E125 NH-A Astrocytes Primary Cells [Astrocytes]) are 

indicated as one of the 15 possible chromatin states as predicted by Roadmap Epignomics using 
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ChromHMM, based on data for 5 chromatin marks (H3K4me3, H3K4me1, H3K36me3, 

H3K27me3, H3K9me3) in 127 epigenomes (22). Chromatin states are as follows: TssA:Active 

Transcription Start Site (TSS); TssAFlnk:Flanking Active TSS; TxFlnk:Transcription at gene 5' 

and 3'; Tx:Strong transcription; TxWk:Weak transcription; EnhG:Genic enhancers; 

Enh:Enhancers; ZNF/Rpts:ZNF genes & repeats; Het:Heterochromatin; TssBiv:Bivalent/Poised 

TSS; BivFlnk:Flanking Bivalent TSS/Enhancer; EnhBiv:Bivalent Enhancer; ReprPC:Repressed; 

PolyComb; ReprPCWk:Weak Repressed PolyComb; Quies:Quiescent/Low. Pre- and post-natal 

gene expression data across multiple brain regions was obtained from the BrainSpan Atlas of the 

Developing Human Brain (http://www.brainspan.org/). These data include gene expression 

information for cortical tissues indicated on a scale from low (dark blue) to high (dark red) 

expression on a log2 RPKM scale (RPKM = Reads Per Kilobase [of transcript per] Million 

[mapped reads], which normalizes expression levels to account for sequencing depth and gene 

length). The BRAINSPAN cortical tissues, organised in ontological order, are as follows: 

DFC:dorsolateral prefrontal cortex; VFC:ventrolateral prefrontal cortex; MFC:anterior (rostral) 

cingulate (medial prefrontal) cortex; OFC:orbital frontal cortex; M1C:primary motor cortex (area 

M1, area 4); M1C-S1C:primary motor-sensory cortex (samples); PCx:parietal neocortex; 

S1C:primary somatosensory cortex (area S1, areas 3,1,2); IPC:posteroventral (inferior) parietal 

cortex; A1C:primary auditory cortex (core); TCx:temporal neocortex; STC:posterior (caudal) 

superior temporal cortex (area 22c); ITC:inferolateral temporal cortex (area TEv, area 20); 

Ocx:occipital neocortex; V1C:primary visual cortex (striate cortex, area V1/17). 

 

For each locus, we evaluated functional annotations for the lead SNP and for additional SNPs 

considered to be credible causal variants (CCVs) if they were either i) in reasonable LD (r2 ≥ 0.6 

in individuals of European ancestry) with the lead SNP and/or ii) had P-values within 2 orders of 

magnitude of the lead SNP. As lincRNAs show considerable cell/tissue specificity, in the main 

text we detail SNP location based on neighboring coding genes, but detail lincRNAs when our 

lead SNPs show eQTL effects and/or chromatin interactions to these non-coding transcripts. Genes 

at each associated locus were determined to be potential candidates by considering whether the 

lead SNP (or a proxy) was an eQTL for a particular gene in adult or fetal cortical tissue (listed 

above) and/or when chromatin interactions were observed to occur between the region harboring 

the lead/proxy SNPs and a gene promoter in relevant brain tissues (dorsolateral prefrontal cortex 

and/or neural progenitor cells).  

 

Analysis of the central sulcus 

To follow-up the precentral surface area association with rs1080066, 10,557 UK Biobank MRI 

scans were further analyzed using BrainVISA-4.5 Morphologist pipeline for the extraction and 

parameterization of the central sulcus. Quality controlled FreeSurfer outputs (orig.mgz, 

ribbon.mgz and talairach.auto) were directly imported into the pipeline to use the same grey and 

white matter segmentations. Sulci were automatically labeled according to a predefined anatomical 

nomenclature of 61 sulcal labels per hemisphere (101, 102). Extracted meshes for the left and right 

central sulcus were visually quality checked; subjects with mislabeled central sulcus were 

discarded from further analysis; 6,045 individuals had good quality extractions for both the left 

and right hemispheres. An additional 52 individuals were removed for genotyping quality or 

ancestry reasons. The central sulcus depth profile was measured by extending the method 

introduced in Cykowski et al. (47) and Hopkins et al. (103). The ridges at the fundus of the sulcus 

and at the convex hull, along with the two extremities, were automatically extracted. Using these 

http://www.brainspan.org/
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landmarks, two coordinate fields (x and y) were extrapolated over the entire mesh surface (104). 

Sulcal depth was defined as the distance between paired points at the sulcal fundus and brain 

envelope that shared the same y coordinate (105). For each individual, the parametrized surface 

was divided into 100 equally spaced points along the length of the sulcus, and the depth at each 

point was recorded for comparison. We averaged the corresponding depth measurements across 

the left and right sulcus and calculated the effect of the rs1080066 G allele on the bilaterally 

averaged depth at each point. These results are shown in Fig. 4D. 

 

Fine mapping 

In order to identify putatively causal variants at each associated locus for future functional 

validation experiments, we performed fine-mapping with CAVIAR (68). For each associated locus 

(defined in table S5), all SNPs with r2 > 0.6 (using 1000G EUR reference panel) to the index SNP 

for that locus and P < 0.001 to the brain trait of interest were input into the CAVIAR program 

(v2.2). CAVIAR was then run for each locus specifying two causal variants per locus and using 

LD patterns from 1000G EUR reference panel to identify the set of SNPs that have a 95% 

probability of containing the causal variants. These are output in table S13. For those loci where 

the index SNP was not found in 1000G data, only the index SNP was identified as putatively 

causal. 

 

Supplementary Text 

The Desikan-Killiany atlas 

The Desikan-Killiany atlas (10) used here to define the 34 regions of interest is one of many 

possible atlases. This atlas was chosen as it is a common output of FreeSurfer, and it is one of the 

coarser atlases, yielding larger, more consistent regions, defined by the common folding patterns 

visible on standard MRI. More recent efforts partitioning the cortex into 180 regions have used 

high-resolution multimodal assessments (MMPC; 106). Other atlases based on functional 

partitions have also been used, particularly for analyzing function MRI data (107, 108). The 

breakdown of the cortical surface into 34 large parcels yields clear boundaries between the regions, 

and allows for anatomically driven quality assessments (see Imaging in the Supplementary 

Materials and Methods).  

 

The choice of atlas will not have an effect on the global measures; however, the choice of atlas 

would influence our regional findings, and possibly limit findings, as we may not be able to detect 

genetic influences on functionally coherent cortical regions, or refined cortical regions partitioned 

by multimodal MRI measures, for example myelin content, which may have more pathway-

specific genetic influences. Assessing the genetic influences on the cortex at a finer scale is an 

important future effort. However, for multi-cohort efforts such as that performed here, the 

reliability and accuracy of the parcellations should be assessed across multiple age ranges and MRI 

acquisition parameters, such as field strength. Automated, and reliable, quality assurance and label 

accuracy assessments would be an important aspect of this next step. 

 

Our choice of atlas is also likely to influence our findings of regional genetic correlations. It is 

possible that the correlations between adjacent structures, seen in our analysis, may reflect 

suboptimal partitioning of the cortex by the atlas; for example, we see a positive genetic correlation 

between the inferior parietal and the superior parietal gyri, whereas in the MMPC atlas, a portion 
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of each of these two regions is included under a new label, the intraparietal label. Portions of these 

genetically correlated regions may be re-assigned based on other advanced imaging data, such as 

multimodal myelin mapping, which may better define cortical cellular architecture. 

 

Sulcal development 

Positive genetic correlations between the SA of neighboring regions may also be driven by the 

development of the sulcus, separating the regions. The pre- and post- central regions (also known 

as the primary motor and sensorimotor cortices, respectively) are consistently labeled across many 

cortical atlases as the regions directly anterior and posterior to the central sulcus, which appears 

early in development (109). The SA of all four regions surrounding the calcarine sulcus (the 

pericalcarine, lingual, cuneus, and lateral occipital region) show positive genetic correlations. The 

same is also true for the SA of the insula and superior temporal gyri surrounding the lateral sulcus 

(or Sylvian fissure). These major, early-forming sulci show positive genetic correlations between 

the regions that directly surround them for SA, but not TH. These observations may imply that 

part of the genetic influences we observe to be underlying regional SA, may actually be driving 

the formation of the separating folds, or sulci, during fetal development.  
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Additional Cohort Information 

1000BRAINS 

Is a population-based cohort based on the Heinz-Nixdorf Recall Study (HNR) and is supported in 

part by the German National Cohort. We thank the Heinz Nixdorf Foundation (Germany) for their 

generous support in terms of the Heinz Nixdorf Study.  

 

ADNI1 and ADNI2GO 

Data used in the preparation of this article were obtained from the Alzheimer's Disease 

Neuroimaging Initiative database (adni.loni.usc.edu). The ADNI was launched in 2003 as a 5-year 

public–private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment (MCI) and 

early Alzheimer’s disease (AD) and to assess and optimize biomarkers for clinical trials in AD. 

The initial sample included older adults who were cognitive normal (CN) as well as meeting 

criteria for MCI and clinical AD. In 2011, ADNI-2 began to recruit an additional CN group as well 

as individuals with significant memory concerns (SMC), early MCI and late MCI, and AD. These 

subjects, and others carried forward from ADNI-1, were scanned with an updated neuroimaging 

protocol. Participants were recruited from over 60 sites across the U.S. and Canada. For up-to-date 

information, please see www.adni-info.org. ADNI data are disseminated by the Laboratory for 

Neuro Imaging at the University of Southern California.  

 

ALSPAC 

Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st 

December 1992 were invited to take part in the study. The initial number of pregnancies enrolled 

is 14,541 (for these at least one questionnaire has been returned or a “Children in Focus” clinic 

had been attended by 19/07/99). Of these initial pregnancies, there was a total of 14,676 fetuses, 

resulting in 14,062 live births and 13,988 children who were alive at 1 year of age. When the oldest 

children were approximately 7 years of age, an attempt was made to bolster the initial sample with 

eligible cases who had failed to join the study originally. As a result, when considering variables 

collected from the age of seven onwards (and potentially abstracted from obstetric notes) there are 

data available for more than the 14,541 pregnancies mentioned above. The number of new 

pregnancies not in the initial sample (known as Phase I enrolment) that are currently represented 

on the built files and reflecting enrolment status at the age of 18 is 706 (452 and 254 recruited 

during Phases II and III respectively), resulting in an additional 713 children being enrolled. The 

https://mail.qimr.edu.au/owa/redir.aspx?C=DNS7ABM1-ymRH2iXeJs4-DRD5jbrBPUt5FbDlIv7Rx5LIV4coffVCA..&URL=http%3a%2f%2fwww.adni-info.org
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phases of enrolment are described in more detail in the cohort profile paper (see footnote 4 below). 

The total sample size for analyses using any data collected after the age of seven is therefore 15,247 

pregnancies, resulting in 15,458 fetuses. Of this total sample of 15,458 fetuses, 14,775 were live 

births and 14,701 were alive at 1 year of age. A 10% sample of the ALSPAC cohort, known as the 

Children in Focus (CiF) group, attended clinics at the University of Bristol at various time intervals 

between 4 to 61 months of age. The CiF group were chosen at random from the last 6 months of 

ALSPAC births (1432 families attended at least one clinic). Excluded were those mothers who had 

moved out of the area or were lost to follow-up, and those partaking in another study of infant 

development in Avon. The data used in the present study were collected from 391 males and 

further description of this subset and the variables used in this study are provided in Tables S2–

S4. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and 

the Local Research Ethics Committees. This publication is the work of the authors and they will 

serve as guarantors for the contents of this paper. The study website contains details of all the data 

that is available through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). Further information can 

be found in the following papers: Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson 

J, Molloy L, Ness A, Ring S, Davey Smith G. Cohort Profile: The ‘Children of the 90s’; the index 

offspring of The Avon Longitudinal Study of Parents and Children (ALSPAC). International 

Journal of Epidemiology 2013; 42: 111-127; Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, 

Golding J, Davey Smith G, Henderson J, Macleod J, Molloy L, Ness A, Ring S, Nelson SM, 

Lawlor DA. Cohort Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC 

mothers cohort. International Journal of Epidemiology 2013; 42:97-110.  

 

BIG 

The Brain Imaging Genetics (BIG) database was established in Nijmegen, the Netherlands in 2007. 

This resource is now part of Cognomics, a joint initiative by researchers of the Donders Centre for 

Cognitive Neuroimaging, the Human Genetics and Cognitive Neuroscience departments of the 

Radboud University Medical Center, and the Max Planck Institute for Psycholinguistics (funded 

by the Max Planck Society). The present study includes two subsamples of BIG, from successive 

waves of genotyping on Affymetrix (BIG-Affy) and PsychChip (BIG-PsychChip) arrays. 

Analyses for this project were carried out on the Dutch national e-infrastructure with the support 

of SURF Cooperative.  

 

GIG 

The GIG (Genomic Imaging Göttingen) sample was established at the Center for Translational 

Research in Systems Neuroscience and Psychiatry (Head: Prof. Dr. O. Gruber) at Göttingen 

University.  

 

GSP: Brain Genomics Superstruct Project (GSP): Data were provided [in part] by the Brain GSP 

of Harvard University and the Massachusetts General Hospital, with support from the Center for 

BrainScience Neuroinformatics Research Group, the Athinoula A. Martinos Center for Biomedical 

Imaging and the Center for Human Genetic Research. Twenty individual investigators at Harvard 

and Massachusetts General Hospital generously contributed data to GSP. 

 

HUNT 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
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The HUNT Study is a collaboration between HUNT Research Centre (Faculty of Medicine and 

Movement Sciences, NTNU – Norwegian University of Science and Technology), Nord-

Trøndelag County Council, Central Norway Health Authority, and the Norwegian Institute of 

Public Health. 

 

IMpACT 

The International Multi-centre persistent ADHD CollaboraTion (IMpACT), is a consortium of 

clinical and basic researchers from several European countries (The Netherlands, Germany, Spain, 

Norway, The United Kingdom, Sweden), from the United States of America, and from Brazil. 

 

LBC1936 

The work was undertaken as part of the Cross Council and University of Edinburgh Centre for 

Cognitive Ageing and Cognitive Epidemiology (CCACE; http://www.ccace.ed.ac.uk). The image 

acquisition and analysis was performed at the Brain Research Imaging Centre, University of 

Edinburgh (http://www.bric.ed.ac.uk). 

 

MPIP 

The MPIP Munich Morphometry Sample comprises images acquired as part of the Munich 

Antidepressant Response Signature (MARS) Study and the Recurrent Unipolar Depression (RUD) 

Case-Control study performed at the MPIP, and control subjects acquired at the Ludwig-

Maximilians-University, Munich, Department of Psychiatry. PPMI: Data used in the preparation 

of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database 

(www.ppmi-info.org/data). For up-to-date information on the study, visit www.ppmi-info.org. 

 

UK Biobank 

This research has been conducted using the UK Biobank Resource under Application Number 

‘11559’. 
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Fig. S1. 

Flow chart summarizing the phases of meta-analysis. GWS: genome-wide significant.  
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Fig. S2. (see external file ManhattanPlots.pdf) 

Manhattan plots of each trait from the principal meta-analysis.   
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Fig. S3. (see external fileQQPlots.pdf) 

QQ plots of each region from the principal meta-analysis. 
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Fig. S4. (see external file Forest Plots.pdf). 

Forest plots of the 369 genome-wide significant loci  
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Fig. S5. (see external file LocusZoom.pdf). 

LocusZoom plots of the 369 genome-wide significant loci  
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Fig. S6. 

Partitioned heritability enrichment analyses (A) active regulatory elements across tissues and cell 

types, (B) temporally specific active regulatory elements, (C) regulatory elements of cell-type 

specific genes in fetal brain, and (D) differentially accessible regions between progenitor-

enriched germinal zone (GZ) and neuron-enriched cortical plate (CP).   



 

 

37 

 

 

Fig. S7. 

Significance of the enrichment of gene ontology annotations for (A) total surface area, and (B) 

multivariate regional surface area from TATES output.   
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Fig. S8. 

Regional association plot for the 3p24.1 locus (rs12630663). Localizing EOMES, validated 

enhancer regulating EOMES expression, chromatin interaction, and microcephaly associated 

translocation breakpoint.   



 

 

39 

 

 

Fig. S9. 

Clustering of genetic correlations among (A) surface area and (B) thickness regions after 

correcting for global measures. Clustering of genetic correlations among (C) surface area and (D) 

thickness regions without correcting for global measures. The best-fitting model for surface area 

and thickness with global correction was 4 diagonal components with varying volume and shape. 

The best-fitting model for surface area and thickness without global correction was 5 spherical 

components with varying volume.   
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Fig. S10. 

P-value of genome-wide significant regional SNPs with global control compared to their P-value 

in the global measure for (A) surface area and (B) thickness. Effect size of genome-wide 

significant regional SNPs with global control compared to their effect size in global measures for 

(C) surface area and (D) thickness. Effect size of genome-wide significant regional SNPs with 

global control compared to regional SNPs without global control in (E) surface area and (F) 

thickness.   
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Fig. S11. (see external file PhenotypicPlots.pdf) 

Phenotypic distribution plots from each cohort and trait included in the meta-analyses.   
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Tables S1 to S20 (separate file Grasby_etal_Supplementary_Tables.xlsx). 

Table S1. 

Phenotype descriptions 

 

Table S2.  

Cohort descriptions 

 

Table S3.  

Description of the imaging data for each cohort and percentage of individuals retained in each 

cohort after quality control who were taken forward to the GWAS analyses for each cohort and 

each trait 

 

Table S4.  

Description of the genotype data for each cohort 

 

Table S5.  

Meta-analytic GWAS results for the 369 loci taken forward for replication 

 

Table S6.  

Results from MAGMA gene based tests 

 

Table S7.  

Univariate heritability (twin and SNP) for global and regional surface area and thickness 

 

Table S8.  

Polygenic risk score results for global and regional surface area and thickness 

 

Table S9.  

Genetic correlations (LD score rG) calculated between global cortical measures and selected 

morphological traits 

 

Table S10.  

Results from DEPICT pathway based tests 

 

Table S11.  

Summary of bioinformatic functional follow-ups 

 

Table S12.  

eQTL and chromatin interaction information for lead SNPs and proxies 

 

Table S13.  

Results from CAVIAR fine-mapping  

 

Table S14.  

Genetic correlations (LD score rG) calculated from the GWAS of regional measures corrected for 

global measures 
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Table S15.  

Genetic correlations (LD score rG) calculated from the GWAS of regional measures not corrected 

for global measures 

 

Table S16.  

Genetic correlations (LD score rG) calculated between the imaging phenotypes and selected 

neuropsychiatric disorders and psychological traits 

 

Table S17.  

Genetic correlations (LD score rG) calculated between the imaging phenotypes and selected 

neuropsychiatric disorders and psychological traits on healthy-only participants 

 

Table S18.  

Mendelian randomization analysis results for total SA and 8 correlated neuropsychological traits 

 

Table S19.  

Latent causal variable analysis results for total SA against 8 genetically correlated traits 

 

Table S20.  

Data access statements 

 


