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Abstract: The cerebral cortex underlies our complex cognitive capabilities, yet we know little 

about the specific genetic loci influencing human cortical structure. To identify genetic variants 

impacting cortical structure, we conducted a genome-wide association meta-analysis of brain MRI 

data from 51,665 individuals. We analyzed the surface area and average thickness of the whole 

cortex and 34 regions with known functional specializations. We identified 237 significant loci 5 

and found significant enrichment for loci influencing total surface area within regulatory elements 

active during prenatal cortical development, supporting the radial unit hypothesis. Loci impacting 

regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor 

expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive 

function, Parkinson’s disease, insomnia, depression, neuroticism, and ADHD. 10 

One Sentence Summary: Common genetic variation is associated with inter-individual variation 

in the structure of the human cortex, both globally and within specific regions, and is shared with 

genetic risk factors for some neuropsychiatric disorders. 

Main Text: The human cerebral cortex is the outer grey matter layer of the brain, which is 

implicated in multiple aspects of higher cognitive function. Its distinct folding pattern is 15 

characterized by convex (gyral) and concave (sulcal) regions. Computational brain mapping 

approaches use the consistent folding patterns across individual cortices to label brain regions (1). 

During fetal development excitatory neurons, the predominant neuronal cell-type in the cortex, are 

generated from neural progenitor cells in the developing germinal zone (2). The radial unit 

hypothesis (3) posits that the expansion of cortical surface area (SA) is driven by the proliferation 20 

of these neural progenitor cells, whereas thickness (TH) is determined by the number of their 

neurogenic divisions. Variation in global and regional measures of cortical SA and TH have been 

reliably associated with neuropsychiatric disorders and psychological traits (4) (table S1). Twin 

and family-based brain imaging studies indicate that SA and TH measurements are highly heritable 

and are influenced by largely different genetic factors (5-7). Despite extensive studies of genes 25 

impacting cortical structure in model organisms, our current understanding of the genetic variation 

impacting human cortical size and patterning is limited to rare, highly penetrant variants (8, 9). 

These variants often disrupt cortical development, leading to altered postnatal structure. However, 

little is known about how common genetic variants impact human cortical SA and TH.  

 30 

To identify genetic loci associated with variation in the human cortex we conducted genome-wide 

association meta-analyses of cortical SA and TH measures in 51,665 individuals from 60 cohorts 

from around the world, who were primarily of European descent (~94%; tables S2–S4). Cortical 

measures were extracted from structural brain MRI scans in 34 regions defined by the commonly 

used Desikan-Killiany atlas, which establishes coarse partitions of the cortex. The regional 35 

boundaries are based on gyral anatomy labeled from between the depths of the sulci (10, 11). We 

analyzed two global measures, total SA and average TH, and SA and TH for the 34 regions 

averaged across both hemispheres, yielding 70 distinct phenotypes (Fig. 1A; table S1). 

 

Within each cohort genome-wide association (GWAS) for each of the 70 phenotypes was 40 

conducted using an additive model. To identify genetic influences specific to each region, the 

primary GWAS of regional measures included the global measure of SA or TH as a covariate. To 

estimate the multiple testing burden associated with analyzing 70 phenotypes we used matrix 

spectral decomposition (12), which yielded 60 independent traits, and a multiple-testing 

significance threshold of P ≤ 8.3 x 10-10. 45 
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The principal meta-analysis comprised results from 33,992 participants of European ancestry 

(23,909 from 49 cohorts participating in ENIGMA and 10,083 from the UK Biobank). We sought 

replication for loci reaching genome-wide significance (P ≤ 5 x 10-8) in an additional ENIGMA 

cohort (777 participants) and with the CHARGE consortium (13) (13,952 participants). In 

addition, we meta-analyzed eight cohorts of non-European ancestry (2,944 participants) to 5 

examine the generalization of these effects across ancestries. High genetic correlations were 

observed between the meta-analyzed ENIGMA European cohorts and the UK Biobank cohort 

using LD-score regression (total SA rG = 1.00, Z-score PrG = 2.7 x 10-27, average TH rG = 0.91, Z-

score PrG = 1.7 x 10-19, indicating consistent genetic architecture between the 49 ENIGMA cohorts 

and data collected from a single scanner at the primary UK Biobank imaging site.  10 

 

Across the 70 cortical phenotypes we identified 369 loci that were genome-wide significant in the 

principal meta-analysis (P ≤ 5 x 10-8; Fig. 1B; table S5). Of these, 190 have not been previously 

associated with either intracranial volume or cortical SA, TH, or volume (13-18). Twenty five of 

these were insertions or deletions (INDELs). Fourteen INDELs had a proxy single nucleotide 15 

polymorphism (SNP) available in the European replication data; no proxies were available for nine 

INDELs and one SNP. Of the 360 loci for which the SNP or a proxy was available, 307 (SA: 241, 

TH: 66) remained genome-wide significant when the replication data were included in the meta-

analysis, with 237 passing multiple testing correction (P ≤ 8.3 x 10-10; SA: 187, TH: 50). Of the 

307 loci, 292 were available in the meta-analysis of non-European cohorts. The 95% confidence 20 

intervals around the non-European meta-analysis effect sizes included those from the European 

meta-analysis for 238 of these loci. Of the 292 loci available in the non-European cohorts, 279 had 

effects in the same direction in both the European and non-European meta-analyses, and 136 

became more significant when the whole sample was meta-analyzed (table S5; fig. S1). Variability 

in effects across ancestry may be due to differences in allele frequency; however, the power for 25 

these comparisons is limited and further comparisons with larger non-European cohorts will help 

clarify the generalizability of these effects (table S5). We examined gene-based effects (allowing 

for a 50 kb window around genes), and found significant associations for 313 genes across the 70 

cortical phenotypes (table S6). The meta-analytic results are summarized as Manhattan, QQ, 

Forest, and LocusZoom plots (figs. S2–S5). 30 

 

Genetics of total SA and average TH 

Common variants explained 34% (SE = 3%) of the variation in total SA and 26% (SE = 2%) in 

average TH. These estimates account for more than a third of the heritability estimated from the 

QTIM twin sample (91% for total SA and 64% for average TH; table S7), indicating that more 35 

genetic variants, including rare variants, are yet to be identified. To examine the extent to which 

our results could predict SA and TH, we derived polygenic scores (PRS) from the principal meta-

analysis results. These scores significantly predicted SA and TH in an independent sample of 5,095 

European participants, explaining between 2–3% of the trait variance (given a PRS threshold of P 

≤ 0.01 R2
SA = 0.029, linear regression coefficient t-test P = 6.54 x 10-50; R2

TH = 0.022, t-test P = 40 

3.34 x 10-33; table S8).  

 

We observed a significant negative genetic correlation between total SA and average TH (rG = -

0.32, SE = 0.05, Z-score PrG = 6.5 x 10-12; Fig. 2A), which persisted after excluding the 

chromosome 17 inversion region known to influence brain size (14) (rG = -0.31, SE = 0.05, Z-score 45 

PrG = 3.3 x 10-12). Genetic correlations could indicate causal relationships between traits, 
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pleiotropy, or a genetic mediator influencing both traits. Latent causal variable (LCV) analysis, 

which tests for causality using genome-wide data (19), showed no evidence of causation (LCV 

genetic causality proportion gcp = 0.06, t-test Pgcp=0 = 0.729). The negative correlation suggests 

that genetic influences have opposing effects on SA and TH, which may result from pleiotropic 

effects or genetic effects on a mediating trait that, for example, might constrain total cortical 5 

volume. The absence of causality and the small magnitude of this correlation is consistent with the 

radial unit hypothesis (3), whereby different developmental mechanisms promote SA expansion 

and increases in TH. 

 

As expected, total SA showed a positive genetic correlation with intracranial volume (ICV); this 10 

correlation remained after controlling for height demonstrating that this relationship is not solely 

driven by body size (Fig. 2A; table S8). The global cortical measures did not show significant 

genetic correlations with the volumes of major subcortical structures (Fig. 2A) except for total SA 

and the hippocampus, consistent with their shared telencephalic developmental origin.  

 15 

To identify if common variation associated with cortical structure relate to gene regulation within 

a given tissue type, developmental time period, or cell-type, we performed partitioned heritability 

analyses (20) using sets of gene regulatory annotations from adult and fetal brain tissues (21, 22). 

Total SA and average TH showed the strongest enrichment of heritability within genomic regions 

of active gene regulation (promoters and enhancers) in brain tissue and in vitro neural models 20 

derived from stem cell differentiation (Fig. 2B; fig. S6A). To examine temporally specific 

regulatory elements, we selected those active regulatory elements specifically present in either 

mid-fetal brain or adult cortex. Total SA showed significant enrichment of heritability only within 

mid-fetal specific active regulatory elements, whereas average TH showed significant enrichment 

only within adult specific active regulatory elements (Fig. 2C, fig S6B). Stronger enrichment was 25 

found in regions of the fetal cortex with more accessible chromatin in the neural progenitor-

enriched germinal zone than in the neuron-enriched cortical plate (fig. S6C), similar to a previous 

analysis for intracranial volume (21). We then performed an additional partitioned heritability 

enrichment analysis using regulatory elements associated with cell-type specific gene expression 

derived from a large single-cell RNA-seq study of the human fetal brain (23). This analysis 30 

revealed significant enrichment of total SA heritability in all progenitor cell-types including those 

in active phases of mitosis as well as three different classes of progenitor cells including outer 

radial glia cells, a cell-type associated with expansion of cortical surface area in human evolution 

(2) (Fig 2D, fig S6D). We also identified significant enrichments in upper layer excitatory neurons, 

oligodendrocyte progenitor cells, and microglia. These findings suggest that total SA is influenced 35 

by common genetic variants that may alter gene regulatory activity in neural progenitor cells 

during fetal development, supporting the radial unit hypothesis (3). In contrast, the strongest 

evidence of enrichment for average TH was found in active regulatory elements in the adult brain 

samples, which may reflect processes occurring after mid-fetal development, such as myelination, 

branching, or pruning (24). 40 

 

We conducted pathway analyses to determine if there was enrichment of association near genes in 

known biological pathways (25). We found 91 significant gene-sets for total SA and four for 

average TH (table S9). Gene-sets associated with total SA included chromatin binding, a process 

guiding neurodevelopmental fate decisions (26) (table S9, fig. S7A). In addition, consistent with 45 
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the partitioned heritability analyses implicating neural progenitor cells in total SA, gene ontology 

terms relevant to cell-cycle also showed significant enrichment in these analyses. 

 

Loci influencing total SA and average TH 

Seventeen of the 255 replicated loci were associated with total SA; 12 survived correction for 5 

multiple testing (Fig. 2E, table S5). Eight loci influencing total SA have been previously associated 

with ICV (14). These include rs79600142 (principal meta-analysis PMA = 2.3 x 10-32; replication 

Prep = 3.5 x 10-43; P-values reported from all meta-analytic results were for Z-scores from fixed-

effect meta-analyses), in the highly pleiotropic chromosome 17q21.31 inversion region, which has 

been associated with Parkinson’s disease (27), educational attainment (28), and neuroticism (29). 10 

On 10q24.33, rs1628768 (Z-score PMA = 1.7 x 10-13; Prep = 1.0 x 10-17) was shown by our 

bioinformatic annotations (30) to be an expression quantitative trait locus (eQTL) influencing 

expression levels of the INA gene, and of the schizophrenia candidate genes (31) AS3MT, NT5C2 

and WBP1L (linear regression coefficient t-test false discovery rate (FDR) corrected P-value for 

the association of rs1628768 with expression data from surrounding genes FDRCommonMind 15 

Consortium(CMC) < 1.0 x 10-2; tables S11–S12). This region has been associated with schizophrenia, 

however, rs1628768 is in low linkage disequilibrium (LD) with the schizophrenia-associated SNP 

rs11191419 (r2 = 0.15; (32)). The 6q21 locus influencing total SA is intronic to FOXO3 (which 

also showed a significant gene-based association with total SA, table S6). The major allele of the 

lead variant rs2802295 is associated with larger total SA (Z-score PMA = 2.5 x 10-10; Prep = 2.5 x 20 

10-13) and is in complete LD with rs2490272, a SNP previously associated with higher general 

cognitive function (33). 

 

One locus not previously associated with ICV was rs11171739 (Z-score PMA = 8.4 x 10-10; Prep = 

8.1 x 10-11) on 12q13.2. This SNP is in high LD with SNPs associated with educational attainment 25 

(28), and is an eQTL for RPS26 in fetal (34) and adult cortex (30)(t-test of Pearson’s r FDRFETAL 

= 2.0 x 10-24, empirical t-test of Pearson’s r FDRGenotype-Tissue Expression(GTEx) = 3.3 x 10-40; tables S11–

S12). On 3p24.1, rs12630663 (Z-score PMA = 1.3 x 10-8; Prep = 1.4 x 10-8) is of interest due to its 

proximity (~200kb) to EOMES (also known as TBR2), which is expressed specifically in 

intermediate progenitor cells in the developing fetal cortex (35). rs12630663 is located in a 30 

chromosomal region with chromatin accessibility specific to the germinal zone in the human fetal 

cortex (21). Putatively causal SNPs in this region (table S13) show significant chromatin 

interactions with the EOMES promoter (36). The region also contains numerous regulatory 

elements that when excised via CRISPR/Cas9 in differentiating neural progenitor cells 

significantly reduced EOMES expression (21). A rare homozygous chromosomal translocation in 35 

the region separating the regulatory elements from EOMES (fig. S8) silences EOMES expression 

and causes microcephaly (37), demonstrating that rare and common non-coding variation can have 

similar phenotypic consequences, but to different degrees. 

 

The two replicated loci associated with average TH, neither of which have been previously 40 

identified, survived correction for multiple testing (Fig. 2E; table S5). On 3p22.1, rs533577 (Z-

score PMA = 8.4 x 10-11; Prep = 3.7 x 10-12) is a fetal cortex eQTL (t-test FDRFETAL= 1.8 x 10-4) for 

RPSA, encoding a 40S ribosomal protein with a potential role as a laminin receptor (38). Laminins 

are major constituents of extracellular matrix, and have critical roles in neurogenesis, neuronal 

differentiation and migration (39). On 2q11.2, rs11692435 (Z-score PMA = 3.2 x 10-10; Prep = 4.5 x 45 

10-10) encodes a missense variant (p.A143V) predicted to impact ACTR1B protein function (40), 
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and is an ACTR1B eQTL in fetal cortex (t-test FDRFETAL = 3.9 x 10-2) (tables S11–S12). ACTR1B 

is a subunit of the dynactin complex involved in microtubule remodeling, which is important for 

neuronal migration (41).  

 

Genetics of regional SA and TH 5 

The amount of phenotypic variance explained by common variants was higher for SA (8–31%) 

than TH (5–21%) for each of the specific cortical regions (Fig. 3A–B; table S7). To focus on region 

specific influences we controlled for global measures in the regional GWAS, which reduced the 

covariance between the regional measures (tables S14–S15). Similar to the genetic correlation 

between global SA and TH, when significant, genetic correlations between regional SA and TH 10 

within the same region were moderate and negative (tables S14–S15). This suggests that genetic 

variants contributing to the expansion of SA in a specific region tend to also contribute to thinner 

TH in that region.  

 

Genetic correlations between regions were calculated separately for SA and TH. Most genetic 15 

correlations between regions did not survive multiple testing correction. For SA significant 

positive genetic correlations were generally found between physically adjacent regions and 

negative correlations between more distal regions (Fig. 3A). This pattern mirrored the phenotypic 

correlations between regions and was also observed for TH (Fig. 3A–B). Consistent with this, 

hierarchical clustering of the genetic correlations resulted in a general grouping by physical 20 

proximity (fig. S9). These positive genetic correlations were strongest between SA of regions 

surrounding the major, early forming sulci (e.g., pericalcarine, lingual, cuneus, and lateral occipital 

regions surrounding the calcarine sulcus), which may potentially reflect genetic effects acting on 

the development of the sulci (11). 

 25 

To further investigate biological pathways influencing areal (regional) identity, we aggregated 

association statistics using multivariate GWAS analyses (42) separately for regional SA and TH. 

These analyses identify variants shared across regions and those within specific regions while 

accounting for the phenotypic correlations between regions. Pathway analyses of the multivariate 

SA results showed significant enrichment for 903 gene sets (table S10), many of which are 30 

involved in Wnt signaling, with the canonical Wnt signaling pathway showing the strongest 

enrichment (Z-score, P = 8.8 x 10-11). Wnt proteins regulate neural progenitor fate decisions (43, 

44) and are expressed in spatially specific manners influencing areal identity (45). Pathway 

analyses of the multivariate TH results did not yield any findings that survived multiple testing 

correction. 35 

 

Loci influencing regional SA and TH 

A total of 224 loci were nominally associated with regional SA and 64 with regional TH; of these 

175 SA and 48 TH loci survived multiple testing correction (table S5). As shown in Fig. 1B, most 

loci were associated with a single cortical region. Of the loci influencing regional measures, few 40 

were also associated with global measures. Those that were showed effects in the same direction, 

implying that the significant regional loci were not due to collider bias (46) (fig. S10). 

 

The strongest regional association was observed on chromosome 15q14 with the precentral SA 

(rs1080066, Z-score PMA = 1.8 x 10-137; Prep = 4.6 x 10-189; variance explained = 1.03%; Fig. 4A). 45 

Across 12 traits we observed 48 independent significant associations from 21 LD blocks (r2 



Submitted Manuscript: Confidential 

18 

 

threshold ≤ 0.02; see Fig. 4B, table S5). As we observed strong association with the SA of both 

pre- and post-central gyri (Fig. 4C), we localized the association within the central sulcus in 5,993 

unrelated individuals from the UK Biobank. The most significant association between rs1080066 

and sulcal depth was observed around the pli de passage fronto-pariétal moyen (linear regression 

coefficient t-test P = 7.9 x 10-21), a region associated with hand fine-motor function in humans 5 

(47), which shows distinct depth patterns across different species of primates (48) (Fig. 4D). 

rs1080066 is a fetal cortex eQTL for a downstream gene EIF2AK4 (t-test FDRFETAL = 4.8 x 10-2) 

encoding the GCN2 protein, which is a negative regulator of synaptic plasticity, memory and 

neuritogenesis (49). The functional data also highlight THBS1 via chromatin interaction between 

the rs1080066 region and the promoter in neural progenitor cells and an eQTL effect in whole 10 

blood (Z-score FDRBIOSgenelevel = 6.1 x 10-6). THBS1 has roles in synaptogenesis and the 

maintenance of synaptic integrity (50). 

 

Consistent with enrichment in the pathway analyses, a number of other loci were located in regions 

with functional links to genes involved in Wnt signaling (fig. S7B), including 1p13.2, where 15 

rs2999158 (lingual SA, Z-score PMA = 1.9 x 10-11, Prep = 3.0 x 10-11; pericalcarine SA, Z-score PMA 

= 1.9 x 10-11; Prep = 9.9 x 10-16) is an eQTL for ST7L and WNT2B (t-test FDRCMC < 1.0 x 10-2) in 

adult cortex (tables S11–S12). On 14q23.1, we observed 22 significant loci (table S5) from five 

LD blocks. Our strongest association here was for the precuneus SA (rs73313052: Z-score PMA = 

1.1 x 10-24; Prep = 2.2 x 10-35). These loci are located near DACT1 and DAAM1, both involved in 20 

synapse formation and critical members of the Wnt signaling cascade (51, 52). rs73313052 and 

high LD proxies are eQTLs for DAAM1 (t-test FDRCMC < 1.0 x 10-2) in adult cortex (tables S11–

S12). 

 

Several of our regional associations occur near genes with known roles in brain development. For 25 

example, on chromosome 1p22.2, rs1413536 (associated with the inferior parietal SA: Z-score PMA 

= 1.6 x 10-10; Prep = 3.1 x 10-14) is an eQTL in adult cortex for LMO4 (t-test FDRCMC < 1.0 x 10-2), 

with chromatin interactions between the region housing both this SNP and rs59373415 (which is 

associated with the precuneus SA: Z-score PMA = 1.6 x 10-10, Prep = 5.3 x 10-12) and the LMO4 

promoter in neural progenitor cells (table S11–S12). Lmo4 is one of the few genes already known 30 

to be involved in areal identity specification in the mammalian brain (53). 

 

Genetic relationships with other traits 

To examine shared genetic effects between cortical structure and other traits, we performed genetic 

correlation analyses with GWAS summary statistics from 23 selected traits. We observed 35 

significant positive genetic correlations between total SA and general cognitive function (54), 

educational attainment (28), and Parkinson’s disease (27), indicating that allelic influences 

resulting in larger total SA are in part shared with those influencing greater cognitive capabilities 

as well as an increased risk for Parkinson’s disease. For total SA, significant negative genetic 

correlations were detected with insomnia (55), attention deficit hyperactivity disorder (ADHD; 40 

56), depressive symptoms (57), major depressive disorder (58), and neuroticism (29) (Fig. 5A; 

table S16), again indicating that allelic influences resulting in smaller total SA are in part shared 

with those influencing an increased risk for these disorders and traits. To map the magnitude of 

these effects across the brain, we calculated the genetic correlations across the cortical regions 

without correction for the global measures (Fig. 5B). Genetic correlations with average TH did not 45 

survive multiple testing correction, perhaps due to the weaker genetic associations detected in the 
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TH analyses. At the regional level, significant genetic correlations were observed between 

educational attainment and cortical thickness in the inferior parietal, precentral and rostral anterior 

cingulate regions (rG = -0.22, 0.16 and -0.16; Z-score PrG = 2.0 x 10-6, 6.8 x 10-5 and 8.0 x 10-5 

respectively).  Significant genetic correlations were also observed between precentral thickness 

and general cognitive function (rG = 0.19, Z-score PrG = 8.8 x 10-7) as well as between the 5 

posterior cingulate thickness and subjective well-being (rG = 0.25, Z-score PrG = 3.4 x 10-5). To 

confirm these correlations were not driven by the presence of cases within the meta-analysis, 

genetic correlations were recalculated from a meta-analysis of GWAS from population-based 

cohorts and GWAS of controls from the case-control cohorts (N = 28,503). All genetic correlations 

remained significant with the exception of the genetic correlation between total SA and depressive 10 

symptoms (table S17).  

 

We performed bidirectional Mendelian randomization (MR; 59) and LCV (19) analyses to 

investigate potential causal relationships underlying the observed genetic correlations with total 

SA. Both methods provided evidence of a causal effect of total SA on general cognitive function 15 

(inverse variance weighted MR bMR-IVW = 0.15, SE = 0.01, Z-score P = 4.6 x 10-8; LCV gcp = 0.40, 

95% CIs [0.23–0.57], t-test Pgcp=0 = 1.4 x 10-9) and educational attainment (bMR-IVW = 0.12, SE = 

0.01, Z-score P = 2.1 x 10-21; gcp = 0.49, 95% CIs [0.26–0.72], t-test Pgcp=0 = 8.0 x 10-9) (table 

S18–S19). The MR analyses also indicated association in the reverse direction for both general 

cognitive function and education years (table S18); however, this was not supported by the LCV 20 

analyses (table S19). There was limited to no support for a causal relationship in either direction 

between total SA and the six other traits that showed significant genetic correlations (table S18–

S19). Taken together these findings suggest that the previously reported phenotypic relationships 

between cortical surface area and general cognitive function (60, 61) may in part reflect underlying 

causal processes.  25 

 

Discussion 

Here we present a large-scale collaborative investigation of the effects of common genetic 

variation on human cortical structure using data from 51,665 individuals from 60 cohorts. Current 

knowledge of genes impacting cortical structure has been derived largely from creating mutations 30 

in model systems, such as the mouse, and observing impacts on brain structure (8). Given the 

differences between mouse and human cortical structures (62), this study provides an important 

genome-wide insight into human variation and genes impacting a characteristically human 

phenotype. Previous studies have identified rare variants that have large effects on cortical 

structure in humans (8), and this study adds to the catalog of the type of variation that impacts 35 

human cortical structure.  

 

We show that the genetic architecture of the cortex is highly polygenic and that variants often have 

a specific effect on individual cortical regions. This suggests that there are distinct genes involved 

in the development of specific cortical areas and raises the possibility of developmental and 40 

regional specificity in eQTL effects. We also find that rare variants and common variants in similar 

locations in the genome can lead to similar effects on brain structure, though to different degrees. 

For example, a balanced chromosomal translocation near EOMES leads to microcephaly in a 

region abutting a common variant signal associated with small changes in cortical surface area 

(fig. S8). 45 
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We provide evidence that genetic variation impacting gene regulation in progenitor cell-types, 

present in fetal development, impacts adult cortical surface area. This is consistent with the radial 

unit hypothesis, which states that an increase in proliferative divisions of neural progenitor cells 

leads to an expansion of the pool of progenitors resulting in increases in neuronal production and 

cortical surface area (3, 62). Notably, we see an enrichment of heritability in cortical surface area 5 

within regulatory elements that influence outer radial glia cells, this cell-type is considerably more 

prevalent in gyrencephalic species such as humans and has been hypothesized to account for the 

increased progenitor pool size in humans (2). 

 

We also find that Wnt signaling genes influence areal expansion in humans, as previously reported 10 

in model organisms such as mice (45). Cortical thickness was associated with loci near genes 

implicated in cell differentiation, migration, adhesion, and myelination. Consequently, molecular 

studies in the appropriate tissues, such as neural progenitor cells and their differentiated neurons, 

will be critical to map the involvement of specific genes.  

 15 

We demonstrate that genetic variation associated with brain structure also impacts general 

cognitive function, Parkinson’s disease, depression, neuroticism, ADHD, and insomnia. This 

implies that genetic variants impacting brain structure also impact brain function. While most of 

the structural differences in the cortex observed in these disorders have been reported for thickness, 

our results show significant genetic correlations in surface area. This might suggest the phenotypic 20 

differences observed in cortical thickness (table S1) partially reflect environmental influences, 

effects of illness or of treatment. We find evidence that brain structure is an important phenotype 

along the causal pathway leading from genetic variation to differences in general cognitive 

function and educational attainment. 

 25 

In summary, this work identifies genome-wide significant loci associated with cortical surface 

area and thickness and provides a deeper understanding of the genetic architecture of the human 

cerebral cortex and its patterning. 

 

Materials and Methods Summary: 30 

Participants 

Participants were genotyped individuals with cortical MRI data, from 60 cohorts. Participants in 

all cohorts in this study gave written informed consent and each site obtained approval from local 

research ethics committees or Institutional Review Boards. Ethics approval for the meta-analysis 

was granted by the QIMR Berghofer Medical Research Institute Human Research Ethics 35 

Committee (approval: P2204). 

 

Imaging 

Measures of cortical SA and TH were derived from in vivo whole brain T1-weighted MRI scans 

using FreeSurfer MRI processing software (1). SA and TH were quantified for each subject across 40 

the whole cortex and within 34 distinct gyral-defined regions according to the Desikan-Killiany 

atlas averaged across both hemispheres (10). 
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Genetic association analyses 

Within each cohort, GWAS were conducted on each of the 70 imaging phenotypes. After quality 

control, these data were meta-analyzed using METAL (63). Initially the GWAS from European 

cohorts were meta-analyzed together, yielding the principal results that were used in all subsequent 

analyses. We sought replication of the genome-wide significant loci with data from the CHARGE 5 

consortium. To examine generalization of effects, the GWAS from the non-European cohorts were 

meta-analyzed together, and finally we meta-analyzed the European with the non-European 

results. Polygenic scores were derived from the principal meta-analysis and used to predict the 

amount of variance explained by the association of common genetic variants with the cortical SA 

and TH in an independent sample. 10 

 

SNP heritability and tests for genetic correlations and causation 

Heritability explained by common genetic variants (SNP heritability) was estimated using LD 

score regression (64). Genetic correlations between cortical regions were estimated using cross-

trait LD score regression (65). To examine genetic relationships with other traits, we estimated 15 

genetic correlations using cross-trait LD score regression; to determine if these correlations were 

causal we used Mendelian randomization (59) and latent causal variable analyses (19). 

 

Partitioned heritability 

Partitioned heritability analysis was used to estimate the percentage of heritability explained by 20 

annotated regions of the genome (66). Heritability enrichment was first estimated in active 

regulatory elements across tissues and cell types (21, 22). Secondly, heritability enrichment was 

estimated in mid-fetal specific active regulatory elements and adult cortext specific active 

regulatory elements. Thirdly, heritability enrichment was estimated in regulatory elements of cell-

type specific genes in fetal brain (23). 25 

 

Functional follow-up 

The principal meta-analytic results were followed up with gene-based association analysis using 

MAGMA (67). A multivariate analysis of the regional association results was conducted using 

TATES (42). Pathway analyses were conducted on the global measures and the results from the 30 

multivariate analyses using DEPICT to identify enrichment of association in known genetic 

functional pathways (25). To identify putatively causal variants we performed fine-mapping with 

CAVIAR (68). Potential functional impact was investigated using FUMA (30), which annotates 

the SNP location, nearby enhancers or promoters, chromatin state, associated eQTLs, and the 

potential for functional effects through predicted effects. 35 
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Fig. 1. Regions of the human cortex and associated genetic loci. (A) The 34 cortical regions 

defined by the Desikan-Killiany atlas. (B) Ideogram of loci influencing cortical SA and TH.
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Fig. 2. Genetics of Global Measures. (A) Genetic correlations between global measures and 

selected traits (red indicates significant correlation, FDR < 0.05). (B) Partioned heritability 

enrichment in active regulatory elements across tissues and cell types. (C) Partioned heritability 

enrichment in temporally specific active regulatory elements. (D) Partioned heritability enrichment 5 

in regulatory elements of cell-type specific genes in fetal brain. (E) Manhattan plot of loci 

associated with total SA (top) and TH (bottom), green diamonds indicate lead SNP in the principal 

meta-analysis, black diamonds indicate change in P-value after replication, dashed horizontal line 

is genome-wide significance, solid horizontal line is multiple-testing correction threshold.  
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Fig 3. Genetic and Phenotypic Correlations Between Cortical Regions. (A) Surface Area. (B) 

Thickness. The regions are numbered according to the legend of Fig. 1A. The proportion of 

variance accounted for by common genetic variants is shown in the first column (h2
SNP). 

Phenotypic correlations from the UK Biobank are in the upper triangle. Genetic correlations from 5 

the principal meta-analysis are in the lower triangle. Only significant correlations are shown.  
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Fig 4. Genetics of Regional Measures. (A) Regional plot for rs1080066, including additional lead 

SNPs within the LD block and surrounding genes, chromatin interactions in neural progenitor 

cells, chromatin state in RoadMap brain tissues*, and BRAINSPAN candidate gene expression in 

brain tissue**. (B) Ideogram of 15q14, detailing the significant independent loci and cortical 5 

regions. (C) rs1080066 (G allele) association with SA of regions. (D) rs1080066 association with 

central sulcus depth and depth of several primate species *TssA:Active Transcription Start Site 

(TSS); TssAFlnk:Flanking Active TSS; TxFlnk:Transcription at gene 5' and 3'; Tx:Strong 

transcription; TxWk:Weak transcription; EnhG:Genic enhancers; Enh:Enhancers; 

Het:Heterochromatin; TssBiv:Bivalent/Poised TSS; BivFlnk:Flanking Bivalent TSS/Enhancer; 10 

EnhBiv:Bivalent Enhancer; ReprPC:Repressed; PolyComb; ReprPCWk:Weak Repressed 

PolyComb; Quies:Quiescent/Low. **DFC:dorsolateral prefrontal cortex; VFC:ventrolateral 

prefrontal cortex; MFC:anterior cingulate cortex; OFC:orbital frontal cortex; M1C:primary motor 

cortex; M1C-S1C:primary motor-sensory cortex; PCx:parietal neocortex; S1C:primary 

somatosensory cortex; IPC:posteroventral parietal cortex; A1C:primary auditory cortex; 15 

TCx:temporal neocortex; STC:posterior superior temporal cortex; ITC:inferolateral temporal 

cortex; Ocx:occipital neocortex; V1C:primary visual cortex.  
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Fig 5. Genetic correlations with neuropsychiatric and psychological traits. (A) Genetic 

correlations with total SA and average TH positive correlations are shown in red, while negative 

correlations are shown in blue. (B) Regional variation in the strength of genetic correlations 

between regional surface area (without correction for total surface area) and traits showing 5 

significant genetic correlations with total surface area.  


