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Abstract: 
  

Susceptibility genes for psychiatric and neurological disorders - including APOE, BDNF, CLU, 
CNTNAP2, COMT, DISC1, DTNBP1, ErbB4, HFE, NRG1, NTKR3, and ZNF804A - have been 
reported to affect white matter (WM) microstructure in the healthy human brain, as assessed 
through diffusion tensor imaging (DTI). However, effects of single nucleotide polymorphisms 
(SNPs) in these genes explain only a small fraction of the overall variance and are challenging to 
detect reliably in single cohort studies. To date, few studies have evaluated the reproducibility of 
these results. As part of the ENIGMA-DTI consortium, we pooled regional fractional anisotropy 
(FA) measures for 6,165 subjects (CEU ancestry N=4,458) from 11 cohorts worldwide to 
evaluate effects of 15 candidate SNPs by examining their associations with WM microstructure. 
Additive association tests were conducted for each SNP. We used several meta-analytic and 
mega-analytic designs, and we evaluated regions of interest at multiple granularity levels. The 
ENIGMA-DTI protocol was able to detect single-cohort findings as originally reported. Even so, 
in this very large sample, no significant associations remained after multiple-testing correction for 
the 15 SNPs investigated. Suggestive associations (1.3×10-4 < p < 0.05, uncorrected) were found 
for BDNF, COMT, and ZNF804A in specific tracts. Meta- and mega-analyses revealed similar 
findings. Regardless of the approach, the previously reported candidate SNPs did not show 
significant associations with WM microstructure in this largest genetic study of DTI to date; the 
negative findings are likely not due to insufficient power. Genome-wide studies, involving large-
scale meta-analyses, may help to discover SNPs robustly influencing WM microstructure.   

  
Keywords: Diffusion Tensor Imaging (DTI), Imaging Genetics, Candidate SNPs, Meta-

analysis, Reproducibility; false positives; GWAS 
  
 
  
  
  
  

Introduction 
Population and family studies revealed a key role for genetics in neuropsychiatric disorders. Over 
the last decade, genome-wide association studies (GWAS) that search for genetic risk factors 
underlying disease have successfully pinpointed common genetic variants found more frequently 
in affected than unaffected individuals. These genome-wide searches, which consider evidence 
for association across the genome, use a statistical correction to account for the number of tests 
performed. In theory, focused tests of candidate risk factors may provide a more efficient 
evaluation of mechanistic processes that affect gross anatomy and white matter microstructure. 

We do not generally know the mechanisms by which genetic risk variants impact brain 
structure and function. The field of neuroimaging genetics may expedite such discoveries. 
Genetic factors influence variations in brain structure and organization, as measured with 
magnetic resonance imaging (MRI), and ultimately, genetic variations may modulate brain 
function and risk for disease. Recently, large-scale consortia -- including the Enhancing Neuro 
Imaging Genetics through Meta Analysis (ENIGMA) Consortium and Cohorts for Heart and 
Aging Research in Genomic Epidemiology Consortium (CHARGE) -- have identified consistent 
neuroanatomical associations with specific genetic variants. These collaborative approaches boost 
statistical power by assessing tens of thousands of people, and yield more accurate estimation of 
effect sizes 1-4.  
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Before the formation of these large-scale consortia, imaging genetics focused on mapping 
the effects of candidate SNPs and genes from the neuropsychiatric literature in the brains of 
smaller more targeted samples - often with several hundred individuals. Independent replication 
of genetic effects on brain anatomy is challenging, as common genetic variations exert small 
effects, accounting for <1% of the variance. The sample sizes of typical MRI studies do not have 
sufficient power to reliably detect these effects 5, 6 and are more susceptible to false positive 
findings. However, without replication, true effects cannot be confirmed, and time and money 
may be wasted following up false positives. Several candidate SNPs influencing brain volume 
have been reported, however, most findings have not been replicated in large-scale consortium 
work: the majority of the candidates did not show even marginal effects in one study 4. These 
replication failures indicate that the initial reported effects may have been inflated, due to the 
‘winner's curse’ phenomenon 7. However, several other reasons for replication failures have been 
proposed. It could be argued that the meta-analytic approach typically adopted by GWAS 
consortia was limiting the possible power, or that minor methodological considerations in the 
imaging protocols were having a dramatic effect. The recent discovery of multiple significantly 
associated SNPs that account for less than 1% of the variance in regional brain volumes makes 
this less likely 4. Here, we aim to investigate these possibilities in the most methodologically 
comprehensive imaging genetics study to date examining candidate genes on brain structure. We 
analyzed over 6,000 scans from 11 participating cohorts from the Americas, Europe, and 
Australia. 

As shown by ENIGMA and other consortia, MRI can help to discover genetic variants 
that influence brain and substructure volumes. Genetic studies of diffusion MRI can examine how 
genetic variants impact white matter pathways. Diffusion tensor imaging (DTI) quantifies the 
microstructural properties of white matter and allows for network type reconstructions of the 
brain’s physical connections. DTI measures are altered in a wide range of diseases, including 
stroke 8, Alzheimer’s disease (AD) 9, 10, schizophrenia 11, 12, bipolar and mood disorders 13, 14, and 
addiction 15, 16, among others. The heritability of many DTI measures has been established; our 
DTI group within ENIGMA has found these heritability estimates to be reliable and remarkably 
similar across several cohorts 17-19. As approximately half of the variability in many of these DTI 
measures is due to additive genetic effects, it is expected that genetic association studies will 
provide insight into the mechanisms, by which these connections are formed and maintained. 

Several published works have already proposed genetic associations between candidate 
SNPs and white matter microstructure as defined by DTI scans (See Table 1). Independent 
replication of these results, however, has been limited. The initial findings were generally made 
in samples of 100-1000, large for an imaging study, but arguably too small to robustly estimate 
effect sizes. Similar to several early candidate SNP effects having been disputed in the psychiatric 
literature 20, 21, the effects of candidate variants on brain structure have become increasingly 
controversial 22. ENIGMA’s subcortical volume GWAS identified robust associations accounting 
for as little as 0.5% of the variance in volumes of specific structures, but the majority of SNPs 
identified as influencing psychiatric disorders do not reach nominal levels of significance 4. 

Here, we investigated the effects of candidate variants on the microstructure of white 
matter pathways as defined by the most common diffusion MRI measure, fractional anisotropy 
(FA). In these analyses, FA was averaged across the full WM skeleton as well as specific tracts 
using harmonized protocols described in our prior work 17-19. We assembled a sample of 6,165 
individuals (4,458 of them of Caucasian (CEU) ancestry) with DTI and genetic information 
provided by eleven cohorts. We limited the SNPs considered to those previously reported to show 
associations with FA. While most of the SNPs we targeted were originally reported as risk factors 
in the neuropsychiatric literature, one SNP was first identified in a genome-wide analysis of DTI-
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FA traits as being in a promising genetic locus (though it was not shown to be genome-wide 
significant). We included SNPs in the candidate genes APOE, BDNF, CLU, CNTNAP2, COMT, 
DISC1, DTNBP1, ErbB4, HFE, NRG1, NTKR3, and ZNF804A, summarized in Table 1. 

We assessed the association of these variants in the standard meta-analytical framework 
used for GWAS. We also determined whether the power to detect the genetic effects would be 
improved in a mega-analytical framework, where the statistical tests are computed on a pooled 
data set. In addition, we examined the effect within the samples in which the associations had 
originally been reported. This allowed us to determine whether the harmonized image processing 
approach taken within ENIGMA would maintain the nominal association within that sample. 

Independent testing of multiple brain regions of interest may impose an unnecessarily 
strict multiple comparisons correction requirement on the results, if the average FA across the full 
brain has similar effect sizes for the individual SNPs as the regional measures. Therefore, as a 
follow-up analysis, we made statistical inferences across various groupings of the regions of 
interest to determine if effects would be stronger had we, for example, analyzed bilateral regions 
separately, or only analyzed the corpus callosum as a whole, rather than including the genu, body, 
and splenium, separately. 

We hypothesized that the reported findings may be limited to the discovery samples, and 
may not generalize to other cohorts, reinforcing the need for replication in imaging genetics. We 
further hypothesized that the impact of methodological differences in image processing on the 
association would be limited, so that associations reported in the original findings would be 
present in the phenotypes produced using the harmonized ENIGMA protocols, and the effect 
sizes would be similar for each SNP between meta- and mega-analyses of cohort effects. Our 
study corroborates the inconsistencies in the current literature and provides ample evidence for 
the need to continue unbiased genome-wide searches with quantitative brain measures. 

  
Materials and Methods 
Our study aimed to determine whether candidate SNPs, that were previously reported to have an 
association with white matter microstructure (as measured by DTI fractional anisotropy, FA), can 
be replicated in a large DTI-based imaging genetics study. In the following sections, we describe: 
(2.1) the selection process for SNPs we focused on in this study; (2.2) demographic and imaging 
parameters of the cohorts included in the analysis; (2.3) a brief overview of the previously 
described harmonized image processing performed as part of ENIGMA-DTI; (2.4) the genetic 
associations and the meta- and mega-statistical approaches; (2.5) multiple comparisons correction 
considerations taken in this work. 
2.1 Candidate SNP selection 
We identified the SNPs considered here through a literature search, when this project was 
initiated in June 2014, setting a filter to find those SNPs associated with FA that had been 
selected because of (1) their ‘known’ links with brain-related disorders or (2) those that had been 
discovered through genome-wide screens of diffusion-weighted imaging measures. This search 
identified fourteen SNPs within twelve genes (APOE, BDNF, CLU, CNTNAP2, COMT, DISC1, 
DTNBP1, ErbB4, HFE, NRG1, NTKR3, ZNF804A) that had previously been identified as 
candidate genes within the psychiatric literature (See Table 2). GWASs for DTI-FA have also 
been performed 23, 24, but no results have met statistical thresholds for genome-wide significance. 
To determine if the strongest hit from these analyses would reach genome-wide significance if the 
overall sample size was dramatically increased, this variant was also included as a putative 
candidate. All of these SNPs are common (present in >5% of the population) and have been 
previously associated with normal variance in FA values in healthy individuals, in at least one 
published study. 
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Table 1: List of candidate SNPs with their corresponding genes. These SNPs have been investigated to find 
associations with FA derived from diffusion tensor imaging (DTI). References to associations or lack of associations 
are listed in the last column. Published null findings are marked with a ‘*’. Additional information including minor 
allele frequencies and population information is listed in Supplementary Table 2.  

SNP rs#  Gene References 

rs1018381 DTNBP1: Dysbindin ● Nickl-Jockschat et al., 2011 25  

rs11136000 CLU: Clusterin ● Braskie et al., 2011 26  

rs1344706 
ZNF804A: Zinc finger protein 
804A 

● Kuswanto et al., 2012 27  
● *Voineskos et al., 2011 28  
● Wei et al., 2012 29 
● *Fernandes et al., 2014 30  

rs1799945 HFE: Human hemochromatosis  ● Jahanshad et al., 2012 31 

rs2710126 
CNTNAP2: Contactin associated 
protein-like 2 

● Clemm von Hohenberg et al., 2013 32  
● Gupta et al., 2015 33  

rs429358 APOE: Apolipoprotein E 

● Smith et al., 2008 34 
● Honea et al., 2009 35 
● Heise et al., 2010 36  
● Lyall et al., 2014 37  
● *Matura et al., 2014 38 

rs4680 COMT: Catechol-O-
methyltransferase 

● Zhang et al., 2012 39 
● Seok et al., 2013 40 
● Hayashi et al., 2014 41 

rs4887348/ 
rs7176429 

NTRK3: Neurotrophic tyrosine 
kinase, receptor, type 3 

● Braskie et al., 2013 42 

rs6265 
BDNF: Brain-derived 
neurotrophic factor 

● Chiang et al., 2011 43  
● Carballedo et al., 2012 44 
● Tost et al., 2012 45 
● Choi et al., 2014 46 
● *Hayashi et al., 2014 41 

rs6675281/ 
rs821616 

DISC1: Disrupted-in-
Schizophrenia-1 

● Sprooten et al., 2011 47  
● Duff et al., 2013 48  
● Li et al., 2013 49  
● Whalley et al., 2015 50  

rs6994992 NRG1: Neuregulin 1 
● McIntosh et al., 2008 51 
● Douet et al., 2014 52 

rs7192208 intergenic ● Lopez et al., 2012 24 

rs839523 
ErbB4: Erb-B2 Receptor 
Tyrosine Kinase 4 

● Konrad et al., 2009 53  
● Zuliani et al., 201154  
● Kohannim et al., 2012 55  
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2.2 Cohorts included 
Eleven cohorts were included in this study, leading to a dataset totaling 6,165 individuals (ages: 
11-85). The imaging genetics analysis tool, Sequential Oligogenic Linkage Analysis Routines 
(SOLAR)-Eclipse software package (http://www.nitrc.org/projects/se_linux), was used to create 
kinship matrices for each cohort. Cohorts consisted of various twin, family, and unrelated 
individuals, mainly of European descent. Cohorts of individuals from mixed ethnic populations in 
the United States, including Latinos and African Americans as well as Caucasians, were also 
included. Genetic imputation was performed according to the ENIGMA Imputation cookbook 
(http://enigma.ini.usc.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf) for 
most sites. The genetic variability of the individuals in the samples was compared to that of 
known population cohorts through multidimensional scaling (MDS); the first two components for 
each individual were plotted against known ethnic samples from the HapMap3 efforts. To avoid 
effects of population stratification, analyses were performed in the largest ethnic group 
(corresponding to 4,458 from the CEU population) and subsequently in all individuals. All meta- 
and mega-analytical approaches were used to estimate overall genetic associations in both cases. 

   
Table 2: The demographic breakdown of the 11 cohorts included in the study is listed below: ADNI: Alzheimer’s 
Disease Neuroimaging Initiative (healthy only subsample used here); BIG: Brain Imaging Genetics; DNS: Duke 
Neurogenetics Study; GOBS: Genetics of Brain Structure and Function; HUNT: The Nord-Trøndelag Health Study; 
IMAGEN: European research project investigating mental health and risk taking behaviour in teenagers; LBC: Lothian 
Birth Cohort; NeuroIMAGE: integrated DNA-cognition-MRI-phenotype project with the aim to identify cognitive, 
neural and genetic underpinnings of ADHD; NIDA-IRP: National Institute on Drug Abuse, Intramural Research 
Program; QTIM: Queensland Twin IMaging Study; TAOS: Teen Alcohol Outcomes Study. 

  

Cohort N 
Total 

N 
CEU 

Related Age 
Range 

Sex M:F Health
y 

Scanner
(s) 

Reference 

ADNI 175 175 No 48-94 106:69 Yes 3T 
General 
Electric 

Nir et al., 
2013 9 

BIG 169 169 No 18-39 77:92 Yes 3T 
Siemens 
(n=83), 

1.5T 
Siemens 
(n=86) 

Franke et 
al., 2010 56 
Guadalupe 
et al., 2014 

57 

DNS 700 298 No 18-22 308:392 Yes 3T 
General 
Electric 

Zuurbier et 
al., 2013 58 

GOBS 808 - Pedigrees 18-85 327:481 Yes 3T 
Siemens 

Kochunov 
et al., 2011 

59  

HUNT 770 770 No 50-66 359:411 Yes 1.5T 
General 
Electric 

Haberg et 
al., 2016 60 
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IMAGEN 1360 1360 No 13-16 662:698 Yes (57%) 
Siemens, 

(18%) 
General 
Electric, 
(25%) 
Philips 

Schumann 
et al., 201061 
Galinowski 
et al., 201562 

LBC 592 592 No 71-74 317:275 Yes 1.5T 
General 
Electric 

Wardlaw et 
al., 2011 63 

NeuroIMAG
E 

423 423 Siblings 8-27 238:185 Control
s + 

ADHD 

1.5T 
Siemens 

van Ewijk et 
al., 2014 64 

von Rhein et 
al., 2015 65 

NIDA-IRP 337 - No 21-65 220:117 Yes 3T 
Siemens 

Zhang et al., 
201015 

Kochunov 
et al., 201316 

QTIM 525 525 Twins/Sibli
ngs 

19-29 193:332 Yes 4T 
Bruker 

Jahanshad et 
al., 2010 66 

TAOS 306 146 Singletons/
Siblings 

12-15 152:154 Yes 3T 
Siemens 

Ramage et 
al., 2015 67 

Swartz et al. 
2015 68 

TOTAL 6165 4458             

 
2.3 ENIGMA-DTI processing  
We used the ENIGMA-DTI protocols for multi-site processing and extraction of tract-wise 
average FA values, as described in our prior work 17-19. Briefly, FA images from all subjects were 
non-linearly registered to the ENIGMA-DTI target FA map. This target was created from the FA 
images of four participating studies and has been shown to provide stable results for children and 
adult cohorts, as previously described 17. Registration algorithms were allowed to vary to ensure 
optimal alignment per cohort, yet FSL’s fnirt 69 was suggested as a default registration, with an 
optional additional script provided using ANTS (http://stnava.github.io/ANTs/) registration tools.  
The data were then processed using the tract-based spatial statistics (TBSS) analytic method 70 
modified to project individual FA values on the ENIGMA-DTI skeleton. Following the extraction 
of the skeletonized white matter and projection of individual FA values, ENIGMA tract-wise 
regions of interest, derived from the Johns Hopkins University (JHU) white matter parcellation 
atlas 71, were transferred to extract the mean FA across the full skeleton and average FA values 
for a total of 25 (partially overlapping) regions [SI Figure 1 and SI Table 1] found to be reliably 
heritable in our prior work 17-19. The protocol, quality control scripts, target template, skeleton 
mask, source code, and executables are publicly available at 
https://www.nitrc.org/projects/enigma_dti/ or http://enigma.ini.usc.edu/ongoing/dti-working-
group/. 
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2.4 Site-level and pooled genetic associations  
We used several statistical models in this analysis; full details can be found in the 
Supplementary Text. Here, we briefly describe the models and the covariates used. 

Regressions were run in the full white matter average FA and for each of 21 unique 
bilateral regional measures, as outlined by the ENIGMA-DTI protocols in Section 2.3. 
Abbreviations and full tract names are listed in SI Table 1. The protocol also contained 3 
additional measures of FA combined for larger tracts, including the entire corpus callosum (3 
original regions: genu, body splenium), internal capsule (3 original regions: anterior limb, 
posterior limb, and retrolenticular), and corona radiata (3 original regions: anterior, posterior, 
superior); this totals 25 (4 non-unique) measures of FA being tested. FA values were used as-is 
(raw and un-normalized), as well as after applying an inverse Gaussian normalization to the 
residuals after adjusting for effects of the covariates. Inverse-variance weighted meta-analysis 
was performed to pool resulting inferences on both sets, and mega-analyses were performed on 
the normalized measures. 

Each SNP (coded in a dose-dependent, additive fashion with respect to the minor allele 
count 0,1, or 2) was regressed on the average FA in each ROI independently at the site level, and 
subsequently at the group level for mega-analysis. Linear models were run for all cohorts of 
unrelated individuals, and mixed effects models using the kinship matrix to model relatedness 
were used for all cohorts with related individuals. We used SOLAR-Eclipse 
(http://www.nitrc.org/projects/se_linux) to create kinship matrices for each individual cohort of 
related individuals after specifying familial relationships. All regressions were performed in the 
CEU sample only as well as the full cohort. 

Several fixed covariates were used in all analyses, including age, sex, age-by-sex, age-
squared, and age-squared-by-sex. Nonlinear effects of age (i.e. age-squared, and age-squared-by-
sex) have been shown to impact FA 59 and were included for all cohorts. The first four 
components of the MDS analyses were also used as covariates for all groups. Two sites, 
NeuroIMAGE and BIG, added a covariate to model the two scanners at which the images were 
collected. NeuroIMAGE also added a covariate to model potential fixed differences between 
participants with ADHD and controls. 

In addition to the breakdown of ROIs tested as part of the ENIGMA-DTI protocol, to 
assess the regional specificity of the associations, we tested various groupings of the ROIs. 
Bilateral measures were broken down into their lateralized regions, and results of those 
associations statistically pooled using Stouffer’s meta-analysis 72 were compared to the original 
groupings, which were further pooled and compared to the effects computed on the overall 
average FA; we aimed to pool regional estimates and therefore reduce the correction needed for 
ROIs. Methods and detailed results of this analysis can be found in the Supplementary Text. 

  
2.5 Multiple comparisons correction 
Multiple statistical tests performed across regions of the image can increase the chance of 
reporting a false positive finding at a given significance threshold, unless steps are taken to 
control for multiple comparisons. A Bonferroni correction threshold accounts for the number of 
variants tested; here 15 variants were tested, leading to a single trait correction threshold of 
0.05/15 = 0.0033. However, as no SNPs reached levels of significance of p < 0.0033, we also 
report those that reached a nominal significance, defined here as those having an uncorrected p-
value of p < 0.05. While neglecting that multiplicity increases false positive risk, with such 
negative significance tests, it can only strengthen the evidence of null effects. 
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Results 
No statistically significant findings were observed when data was pooled across studies, 
regardless of pooling method, although most SNPs were found to have similar directions of effect 
across many regions of interest (Figure 1). 

The breakdown of SNP counts per cohort is highlighted in SI Table 2. The minor allele 
frequency (MAF) for the dysbindin SNP rs1018381 was low (<10%) for all CEU groups. GOBS 
and NIDA cohorts had a higher rs1018381 MAF, perhaps due to their more diverse ethnic 
composition. While all other SNPs had a MAF > 10% in the CEU population, the DISC1 SNP 
rs6675281 had no homozygous carriers in GOBS, and the HFE SNP rs1799945 had no 
homozygotes in NIDA-IRP, both non-CEU cohorts. 

As seen in Figure 2, correlations between the methods were strong in the CEU 
subpopulation; within the full sample, the mega-analyses revealed weaker correlations, likely due 
to the population heterogeneity, variations in the MDS component scale as well as SNP 
frequency, reiterating a known need for cautionary procedures, when combining multiple cohorts. 
Consistencies between the various meta-analytical approaches confirmed that the FA distributions 
with current sample sizes were sufficient to use raw-level statistics without inverse Gaussian 
normalization and parametric approaches. 

Within the CEU sample, nominally significant (uncorrected p<0.05) associations were 
found with both meta- and the mega-pooling method for three polymorphisms: the first 
schizophrenia GWAS-significant SNP in ZNF804A, rs1344706, in the uncinate, COMT rs4680 in 
the body of the corpus callosum, and BDNF rs6265 in the splenium of the corpus callosum and 
the hippocampal portion of the cingulum. Forest plots for these findings are shown in SI Figure 
4. The standard errors for the associations computed with mega-analysis were marginally larger 
than those computed with meta-analysis (shown by width of the markers in the Forest plots in SI 
Figure 4). In the plots, the size of the center square reflects the sample size of the cohort; these 
can be seen for raw-valued associations and those Gaussian-normalized before regression and 
joint statistics. Additional nominally significant associations were found with two of the three 
approaches (both meta, or mega and one meta); these included HFE rs1799945 in the sagittal 
stratum, ZNF804A rs1344706 in the SLF, PCR, PLIC, and RLIC, and DISC1 rs6675281 in the 
anterior corona radiata. Nominal associations were also found for DTNBP1 rs1018381, but as 
previously mentioned, MAFs were too low in the CEU samples for reliable analysis. Our analysis 
of pooling ROIs through Stouffer’s meta-analysis was similar to our individual ROI findings and 
did not reach statistical significance. 

To establish whether the negative results were the result of insufficient sensitivity, we 
conducted a power analysis 73, 74 using a t-test linear multiple regression design in G*Power 3.1 75. 
Previous studies had found SNPs that explain 0.5-1% of the phenotypic variance; using these 
effect sizes with N=4,458 subjects, and 18 fixed effects (11 sites, five age- and sex-related 
covariates, and two site-specific dummy variables) with an alpha of 0.05/15/25=1.3×10-4 to 
reflect the 15 SNPs and search regions (if all 25 were independent), gives a power in the range of 
81.5 to 99.8%. Thus, these negative results are unlikely to be explained by insufficient power. 
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Figure 1 – Effects in people with European ancestry and all ancestries combined. The normalized effect size is 
shown as the Z-score of the joint associations for each SNP on each regional measure (DTI measures are shown on the 
x-axis). The left-most column highlights the effect of the SNPs in the CEU subpopulation and the right-most column in 
all 6,165 individuals. The top-most plots (A) are the meta-analyzed results of the association tests that used a linear 
regression model (accounting for kinship) for each cohort on the variable of interest directly. The middle row (B) 
shows results of the same regression model on the residuals of the variable after removing the effects of covariates; the 
bottom-most row (C) is the result of the mega-analysis run on the residuals at every site. Some SNPs showed nominal 
significance (p<0.05) regardless of the model chosen, but no SNP survived multiple comparisons correction for the 
number of SNPs tested across ROIs. SNPs are labeled according to their gene name; two SNPs in DISC1 and NTRK3 
were evaluated DISC1-a refers to rs6675281, DISC1-b to rs821616; NTRK3-a to rs4887348 and NTRK3-b to 
rs7176429. 
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Figure 2 – Correlations between the overall z-scores across the different methods are plotted. Normalized and non-
normalized meta-analyses are very highly correlated for both the CEU subsample (r2=0.90) and the full sample 
(r2=0.92). The mega-analysis is also highly correlated for the CEU sample (r2=0.8). In the full sample, the mega-
analyses revealed weaker correlations (r2=0.63). SNPs are labeled according to their gene name; two SNPs in DISC1 
and NTRK3 were evaluated DISC1-a refers to rs6675281, DISC1-b to rs821616; NTRK3-a to rs4887348 and NTRK3-b 
to rs7176429. 
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We performed a targeted investigation of candidate SNPs implicated in disease risk that have 
been previously reported to also influence white matter microstructure. SNPs in multiple genes 
have been claimed to be associated with variation in the white matter microstructure of the brain 
as measured by FA from DTI. To test the validity of the associations, it is important to ensure that 
the findings are replicable across populations, and that sample sizes are large enough to detect 
statistically significant associations. While no single imaging site has the sample size needed, 
effective ways to harmonize analyses and pool existing data sets from across the world are 
needed to discover robust associations. Such multi-site, international studies allow discovery of 
genetic effects in populations around the world, and ensure that these associations are consistent 
in diverse groups of individuals. The diversity in this context is not genetic diversity in ancestry, 
which could lead to population stratification effects, but diversity in terms of various 
environmental and demographic aspects captured through global initiatives within the ENIGMA 
Consortium. Here, the statistical tests were performed centrally and on the full set of data at once, 
whereas in a harmonized meta-analytic framework statistics are conducted individually for each 
dataset and summary results are pooled across studies. 

While some SNPs showed nominal associations with localized regions within the FA 
map, this study did not replicate the association of any of the 15 SNPs previously associated with 
FA in single cohort studies, suggesting that previously reported associations might not be robust 
or generalizable. Classic candidate genes long thought to play a significant role in the genetic 
basis of schizophrenia, including some of those evaluated here, such as COMT and DISC1, were 
recently re-evaluated in the largest genomic study of schizophrenia published to date 20, 21. These 
traditionally studied genetic factors were found not to be as pertinent to the disease as initially 
hypothesized, and it was suggested that the original findings were perhaps driven by relatively 
small and underpowered studies. The situation for imaging genetics studies cannot be assumed to 
be any different from these studies of schizophrenia, or any other complex human traits, in that 
regard. 

Our findings may potentially be discouraging to researchers whose studies focus on these 
candidate SNPs, but they do not rule out that effects of such SNPs might be observed in even 
larger sample sizes. Moreover, we targeted specific SNPs of interest within each candidate gene, 
and cannot discount potential contributions of other polymorphisms elsewhere in such genes, in 
regions of independent linkage disequilibrium. Indeed, the genetic architecture of these white 
matter traits may involve a broad range of common variants not yet identified, but identifiable 
with GWAS, as we have recently shown for structural MRI 4. This work shows that the individual 
associations reported in single cohorts are not reliably replicated in other cohorts. It also shows 
that meta-analysis approaches have similar power to mega-analysis. As none of the prior 
candidate SNPs showed widespread associations, we are unable to determine, if mega-analysis 
offers more power to detect true associations than meta-analysis. In heterogeneous cases, we 
found that meta-analytic approaches may provide more consistent results than mega-analysis, 
while both meta- and mega-analysis performed appropriately for cohorts from ethnically 
homogeneous populations. 

This is the first large-scale multi-cohort investigation of white matter microstructure 
assessing multiple candidate SNPs in a statistically rigorous and extensive evaluation. Our results 
question the reliability of previous findings, despite the historical significance many of these 
genes may have presented. However, the impact of “winner’s curse” and publication bias need to 
be taken into account, when reading imaging genetics literature that does not include evidence for 
replication. This is not intended to negate previous findings, as there are also population 
considerations that could perhaps influence the degree and direction of genetic associations, such 
as age, sex, and environmental effects. In this analysis, all groups span a variety of age ranges 
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from multiple countries around the world. Our aim was to identify generalized associations of 
previously highlighted candidate SNPs with white matter across multiple populations around the 
world, not to negate findings within any particular subpopulation, in which they were originally 
reported; subpopulation associations may be valid and are beyond the scope of this study. Instead, 
we advocate the importance of reproducing effects, and highlight the need for harmonizing 
analyses, showing that the ENIGMA-DTI processing method was able to maintain the SNP 
associations within the cohort in which they were first reported. We show that these historical 
candidate SNPs are not globally and reliably ones that influence brain microstructure, and instead 
suggest that to identify the key genetic factors, a large-scale GWAS is needed, as in the 
successful GWAS reported for MRI-based measures of brain volumes 1-4. 

Neuroimaging genetics offers a non-invasive window to observe genetic influences on 
macro-scale brain structure. However, to fully understand the mechanisms behind any 
association, more costly and invasive paradigms are necessary. It is important to ensure the 
robustness and generalizability of the imaging association before investing in in-depth analysis of 
a gene or specific locus; otherwise, significant resources may be wasted. The ENIGMA-DTI 
working group is now pooling together a full-scale detailed genome-wide meta-analysis of all 
common genetic variants in the genome in over 10,000 individuals, to contribute to an unbiased 
search for common genetic variants that help to shape white matter microstructure in the general 
population. 
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Figure Legends 
Figure 1: Effects in people with European ancestry and all ancestries combined. The 
normalized effect size is shown as the Z-score of the joint associations for each SNP on each 
regional measure (DTI measures are shown on the x-axis). The left-most column highlights the 
effect of the SNPs in the CEU subpopulation and the right-most column in all 6,165 individuals. 
The top-most plots (A) are the meta-analyzed results of the association tests that used a linear 
regression model (accounting for kinship) for each cohort on the variable of interest directly. The 
middle row (B) shows results of the same regression model on the residuals of the variable after 
removing the effects of covariates; the bottom-most row (C) is the result of the mega-analysis run 
on the residuals at every site. Some SNPs showed nominal significance (p<0.05) regardless of the 
model chosen, but no SNP survived multiple comparisons correction for the number of SNPs 
tested across ROIs. SNPs are labeled according to their gene name; two SNPs in DISC1 and 
NTRK3 were evaluated DISC1-a refers to rs6675281, DISC1-b to rs821616; NTRK3-a to 
rs4887348 and NTRK3-b to rs7176429. 
Figure 2 – Correlations between the overall z-scores between the different methods are plotted. 
Normalized and un-normalized meta-analyses are very highly correlated for both the CEU 
subsample (r2=0.90) and the full sample (r2=0.92). The mega-analysis is also highly correlated 
for the CEU sample (r2=0.8). In the full sample, the mega-analyses revealed weaker correlations 
(r2=0.63). SNPs are labeled according to their gene name; two SNPs in DISC1 and NTRK3 were 
evaluated DISC1-a refers to rs6675281, DISC1-b to rs821616; NTRK3-a to rs4887348 and 
NTRK3-b to rs7176429. 
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