
Multi-site meta-analysis of image-wide genome-wide 
associations of morphometry  

Neda Jahanshad1, Gennady Roshchupkin5, Joshua Faskowitz1, 
Derrek P. Hibar1, Boris A. Gutman1, Hieab H.H. Adams3,4, Wiro J. 

Niessen5, Meike W. Vernooij3,4, M. Arfan Ikram3,4,6, Marcel P. Zwiers7, 
Alejandro Arias Vasquez8, Barbara Franke8, Alex Ing9,  

Sylvane Desrivieres9, Gunter Schumann9, Greig I. de Zubicaraya, 
Katie L. McMahonb, Sarah E. Medland c, Margaret J. Wrightc,  

Paul M. Thompson1 
 

1Imaging Genetics Center, Department of Neurology, Keck School of Medicine of USC,  
Marina del Rey, CA, USA 

3 Department of Epidemiology, 4 Radiology, 5 Medical Informatics, 6 Neurology,  
Erasmus Medical Center, Rotterdam, NL 

7 Donders Institute, 8 Department of Psychiatry, Human Genetics Radboud UMC, Nijmegen, NL 
9 King's College London, London UK 

bCenter for Advanced Imaging, University of Queensland, Brisbane, Australia 
cQIMR Berghofer Medical Research Institute, Brisbane, Australia 

Abstract (150/150). Large-scale distributed analyses of over 30,000 MRI scans 
recently detected common genetic variants associated with the volumes of 
subcortical brain structures. Scaling up these efforts, still greater computational 
challenges arise in screening the genome for statistical associations at each 
voxel in the brain, localizing effects using “image-wide genome-wide” testing 
(voxelwise GWAS, vGWAS). Here we benefit from distributed computations at 
multiple sites to meta-analyze genome-wide image-wide data, allowing private 
genomic data to stay at the site where it was collected. Site-specific tensor-
based morphometry (TBM) is performed with a custom template for each site, 
using a multi channel registration. A single vGWAS testing 107 variants against 
2 million voxels can yield hundreds of TB of summary statistics, which would 
need to be transferred and pooled for meta-analysis. We propose a 2-step 
method, which reduces data transfer for each site to a subset of SNPs and 
voxels guaranteed to contain all significant hits.  

Keywords: Neuroimaging genetics, GWAS, meta-analysis, Big Data, multiple 
comparisons correction, multi-site. 

1   Introduction 

Imaging genetics is an emerging field in which variations in the human genome are 
related to brain differences, in an attempt to discover specific genetic variants that 
affect brain development, connectivity, and risk for disease. Genome-wide association 



studies (GWAS) test for statistical associations between brain measures and over a 
million single nucleotide polymorphisms (SNPs), or base-pair variants, in the 
genome1. To simplify the screening effort, studies often focus on one or a handful of 
measures extracted from brain scans, such as the overall volume of the hippocampus 
[1]; a recent study of over 30,000 brain MRI scans identified 8 genetic loci that were 
consistently associated with intracranial and subcortical structural volumes, in 50 
cohorts worldwide [2]. Given these recent successes with simple volumetric 
measures, there is great interest in screening the image space more deeply. Each 
image contains many more features, e.g., at individual voxels, allowing better 
localization of gene effects and their patterns in the brain. Testing effects of ~106 
genetic variants at ~106 voxels requires around 1012 statistical tests, but recent 
volumetric associations achieved significance levels of p<10-23, suggesting that effects 
would survive even brute-force Bonferroni corrections for multiple testing. So far, 
successful GWAS for single traits have required samples of 1x104 to 1x106 
individuals to discover and independently replicate statistically significant variants 
[2]. GWAS tests that screen around a million voxels, are severely underpowered in 
individual cohorts, due to the large number of tests performed and the stringent 
statistical criteria needed to establish significance [3]. Initial studies show voxel-wise 
genome-wide association studies (vGWAS) are feasible, i.e., image-wide genome-
wide testing [4-6], but so far these studies have been under-powered to detect true 
associations in cohorts of ~1,000 individuals. To guard against false positives, it has 
become standard in genetics to seek replication of results and/or pool data and 
aggregate evidence across independent cohorts, before associations are considered 
credible and reproducible. At the same time, privacy requirements governing genomic 
data, and in some cases also brain scans, may prevent raw data from being transferred 
and shared. This has led to collaborative efforts using protocol harmonization and 
meta-analysis to aggregate site-specific statistical results. In addition, as datasets 
become vast and more numerous, there is some benefit to distributing the computation 
across sites, and sending the algorithms to the data rather than centralizing all the 
data. Therefore, approaches are needed to meta-analyze massive amounts of data from 
a variety of sources, including image-wide statistics.  
 Several approaches are required to conduct a distributed voxelwise genome-
wide search; first, a registration method is needed to map data from multiple cohorts 
into a single coordinate space. Without such a registration, voxel measures and 
statistics would not be comparable across cohorts. Second, while dimensionality 
reduction is commonly applied in neuroimaging studies, there is no strong prior 
information on which subset of the 1012 SNP x voxel tests are more likely to support 
the strongest association signals. Even if the image features were reduced to several 
thousands, a GWAS evaluating 106-107 SNPs yields around 400TB of compressed 

                                                
1 At each of these SNP locations, there are two possible nucleotides (or alleles), and each 

individual has two chromosomes that will carry one variant or the other. Therefore, at each 
SNP location, and individual will have 0, 1 or 2 copies of the minor allele (which is the term 
used to refer to the least prevalent variant in the population). When testing for statistical 
associations using an additive genetic model, each SNP is coded as 0, 1 or 2 in each 
individual. 



data to sort and filter at each site, making data transfer of all sites summary statistics 
to a centralized site, less than ideal.  
  While methods for developing optimized single-site vGWAS techniques are 
also under development [10], our work is applicable to such approaches and focuses 
on the issues related to the meta-analysis of multi-site vGWAS. Here we develop a 
multi-site adaptable protocol using freely available and common neuroimaging 
software for voxelwise volumetric analysis by tensor-based-morphometry (TBM), and 
we then describe genome-wide association testing in the resulting data. We show it’s 
usefulness in a simple univariate approach to vGWAS, though optimized approaches 
could benefit similarly. Each site conducts statistical analysis on its own cohort 
locally, yielding results specific to that cohort. We then show how to map each site’s 
results into a common space based on four large and arguably representative cohorts 
worldwide; we also address the issue of prioritizing data transfer. 

2   Methods 

2.1   Harmonizing voxelwise associations for meta-analysis of 7 sites  

Data from seven separate cohorts were included in this study, listed in Table 1.  
Preprocessing: Following the approach in [2], subcortical and cortical segmentations 
were performed on 3D anatomical brain MRI scans from each site using FreeSurfer. 
Quality control protocols were implemented to remove poorly segmented images and 
outliers, using procedures developed and tested by the ENIGMA Consortium [1,2]. 
To attempt to reproduce previously reported genetic associations with volumetric 
measures [2], the integer-valued segmentations of these brain structures were included 
as part of the fidelity term (the image similarity metric) in a multichannel nonlinear 
registration approach. The resulting tensor-based morphometry (TBM) workflow was 
implemented across all sites to allow voxel-level inferences about genetic associations 
with regional brain volumetric differences, determined using TBM. 
Site-specific and global minimal deformation templates (MDT): MDTs were 
constructed using the Advanced Normalization Tools (ANTs; 
http://stnava.github.io/ANTs/) software package and accompanying scripts. 
Approximately 30 scans per cohort were used to create each site-specific template. 
Images were first linearly aligned to a common space consistent with the MNI brain 
template before SyN [7] non-linear registration was used to obtain deformation fields. 
To create the multi-channel template, a weight was assigned to each channel, 
corresponding to the contribution of that channel to the total warp. We set the T1-
weighted channel to 1, the cortical ribbon to 0.5 and the subcortical segmentations to 
0.2. These parameters resulted in stable MDTs; the resulting MDTs remained robust 
in cases where poor quality scans were deliberately included.  
 Four of the cohorts (ADNI-1, the Rotterdam study (RSS), the Queensland 
study (QTIM) and BIG; see Figure 1) - representing two older adult and two younger 
adult cohorts - were used to create a representative MDT for all the cohorts, again 
using 3 channels for registration. We chose not to include all sites in the final 



template but instead use representative sites with varying imaging parameters and 
demographics; in practice, new sites will often join an ongoing study and 
continuously re-establishing a template could be impractical.  
 All cohort-specific MDTs were then registered to the final MDT in the same 
manner. These warps were maintained for later pooling of statistical maps to a 
common space. Two alternate methods for template construction and registration 
were also evaluated: 1) Single-channel template and registration. The same T1-
weighed images used for multichannel registration were used, but without the added 
FreeSurfer cortical and subcortical labels. 2) Registration to MNI. To eliminate the 
effect of the specific cohorts in the meta-analysis, it might be suggested that an 
existing template be used for registrations; to this end, we registered all subjects 
directly to the MNI atlas. This has the advantage of staying consistent regardless of 
added subjects or added cohorts; however, use of a single template not drawn from 
the population may introduce other sources of bias in the maps; this also makes 
single-site level analysis on the extracted det(Jacobian) maps less practical, and limit 
the resulting maps to use in multi-site analysis, rather than our proposed approach 
which will additionally provide a processing stream for site-specific investigations. 

2.2 Voxelwise associations on simulated genetic data  

This work was motivated by distributed “big data” analysis that can accommodate 
partially private genomic data. As such, we generated a dataset with simulated genetic 
effects, including 100,000 data-points per subject of each dataset to represent an 
additive genetic effect (0,1, or 2 at each “genetic locus”) using a 2D multinomial 
distribution with probabilities set to the minor allele frequency (MAF) and 1-MAF. 
The MAF was uniformly distributed (as approximated from the publicly available 
ADNI-2 data) and maintained greater than 0.1 to avoid rare variants (and by 
definition < 0.5). Files were saved in the .tped format for integration with PLINK 
software (http://pngu.mgh.harvard.edu/~purcell/plink/). 

For each cohort, a univariate GWAS was performed at every individual 
voxel. To reduce model complexity, covariates including sex and age were removed 
from the image and vGWAS was run on residual maps using PLINK2. Data was 
parallelized across 100 processing nodes, and each PLINK run using the --mpheno 
flag over Nvoxels/100 phenotypes. Each voxel output was 8.5MB in size, generating 
about 2TB of data for the downsampled image. As this was by a factor of 4 in each 
dimension, the full-size image would produce about 43x2TB of data, or ~128TB. 

2.3 Simulating genetic data with predefined volumetric effects 

Of the generated SNPs, five were designed to meet certain volumetric summary 
criteria for each individual cohort. Summary measures were defined extracted and 
defined according to ENIGMA protocols.  

1) SNP with MAF = 0.1 simulated to be marginally (z=1.96) associated with 
average bilateral thalamic volume (after removing the intracranial volume ICV 
effect). 2) Same as 1 but with MAF = 0.3 3) SNP with MAF = 0.1 were generated to 



have an effect size of z=min(N/10, 5) when regressed with bilateral hippocampal 
volume (ICV effect removed) such that the significance was related to the cohort size, 
N, yet was not excessive (|z| < 5). 4) Same as #3 but with MAF = 0.3 5) SNP with 
MAF=0.3 was set to similarly associate with ICV, a feature intended to be removed 
from the voxelwise associations, as TBM was performed on images that had been 
linearly aligned to include scaling after skull stripping, and this effect was not 
included here.  

To enforce these associations, a correlation coefficient was determined from 
the set Z-statistic (1.96 for 1, 2 above). Using the fact that vectors with mean 0 have 
corr=cos(theta), where theta is the angle between them, we centered and 
orthogonalize the response variable (e.g, HV) with a QR-decomposition and scaled 
back; as this method does not lead to the integer values 0,1,2 needed, the values were 
rounded and correlation values were recomputed, and the process was iterated until 
the final correlation was +/-0.1 of the desired value. 
 As this work is intended to be a proof-of-concept, we downsampled the 
images by a factor of 4 for the genome-wide analysis, such that the images contained 
~30,000 voxels (this varied slightly by site). The final MDT had 31,725 voxels. 

2.4 Reduction of data transfer to eliminate negative exchange 

The inverse-variance based aggregate p-value for SNP i at trait (voxel) v, is [8]: 

, where Φ represents the normal transformation and 

 
Here is site j’s effect-size and , its standard error for SNP i and trait v. 
Statistical significance implies that the p-value is less than a given threshold (pcutoff), or 
similarly, the magnitude of the statistic, denoted by z, must be greater than a specific 
threshold (|Zcutoff|): 

. 
If a SNP (ik) at a given vk passes this meta-analytical threshold, then the maximum Z-
score for that SNP across all v must also pass the threshold:  

argmax
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Therefore, we can collapse the image localization information to take only the most 
extreme values for the SNP across the full image. We note that in accordance with the 
inverse-variance meta-analysis formula, to order to ensure the maximal statistic for 
each site, we take the Z-statistics to be the most extreme Beta divided by the square of 
the standard error. If the most extreme +Z-scores for each SNP are taken across all 
sites, then it can only exceed the significant Z-score at ik,vk. 

 
Note positive and negative Z’s are possible, so the same must be considered for –Z.  

pMA−SE (i,v) = 2Φ(|−ZMA−SE (i,v) |)
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Only SNPs with a meta-analyzed statistic  will be subjected to full 
meta-analysis across all voxels.  
 Voxelwise meta-analysis would in a sense filter for localized false positives; for 
example, if one SNP shows an effect in one voxel in one cohort, it wouldn’t 
necessarily have a false effect in the same voxel in a different cohort, therefore the 
meta-analysis would not necessarily show a significant effect. However, when 
collapsing the image the lack of localization can enhance false positives. Given the 
large number of voxels present in an image, (1,869,764 in the full resolution image, 
and 31,725 in the downsampled) using this TBM method, the probability that a SNP 
will reach the threshold for significance at any voxel is high. Therefore, we also 
demonstrate the effect of this approach in segmented images, and show the effect it 
has on the reduction in the data required for transfer.  
 The procedure described here therefore involves the following site-specific steps 
(for which harmonized scripts would be provided): 

1) Creating the cohort-specific template, and defining it’s mapping to the overall 
template (this can be done at the central site, or the template and its mapping to the 
overall template is sent to the central site) 

2) Proposed 3-channel registration of all subjects in cohort to the cohort-specific MDT 
for TBM analysis 

3) Voxelwise GWAS at the site level.  
4) Finding the minimum and maximum statistic across all voxels (in the full image or a 

given parcellation) for each SNP, and sending this information to the central site. 
The data transfer then is performed in two steps:  

1) Sending these minimum and maximum results (+/-Z)  
a. As data is provided for each SNP, this equates to two full GWAS results to 

the central site for each parcellation of the image 
b. At this stage -- the central site pools all sites results and determines which 

SNP set is needed for which parcellation from all individual sites 
2) Sending (possibly reduced datafiles) of chosen SNPs for each parcellation of the 

brain (whole brain or ROIs) 
a. ROIs are delineated on the overall-MDT, and inverse-warps from the 

cohort MDT are applied to the labels using a nearest neighbor interpolation. 

3   Results 

3.1 Simulated associations of fixed genetic effects  

Figure 2a shows the effect of a single variant with set marginal effects on thalamic 
volume (SNP 1 above) mapped using multiple possible voxelwise analysis methods. 
The multichannel approach where the cortical and subcortical volume segmentations 
were used as added registration channels to help drive registration (MDT creation and 
intersubject registration) showed visibly greater specificity with thalamic variability. 
Figure 2b shows the effect of the multichannel registration approach when meta-
analyzing a fixed SNP effect (SNP 4 above) on a voxelwise level. Voxel level 

ZMA-SE (i) ≥ Zcutoff



analysis maintained regional specificity with FDR-significant voxels bilaterally in the 
hippocampus. 

3.2 Data reduction by transferring a reduced set of SNPs 

When analyzing the brain in full, and collapsing the image to take the most extreme 
positive and negative statistic across all voxels for meta-analysis, we find, as may be 
expected from the multiple comparisons, that this did, though not greatly, reduce the 
number of SNPs that could potentially survive multiple comparisons correction after 
meta-analysis.  

With a strict Bonferroni correction accounting for all SNPs (100000) and 
voxels (31,725), 84% of SNPs (or 83954 of the 100000) would be needed, already 
accounting for an approximate 16% reduction in data transfer.  

Dividing the image in to two, the left and right hemisphere, led to an overall 
reduction to 82495 SNPs across the brain. However, data transfer could further be 
reduced as only 78041 were found in one hemisphere, therefore for 4454 of the 82495 
SNPs, data for ½ the image would not need to be transferred.  

Further breaking down the image in to bilateral ROIs, including bilateral 
subcortical regions such as hippocampus, putamen, etc., as well as cortical 
parcellations including anterior, posterior temporal/parietal lobes, cingulate gyrus etc., 
and filling in remaining sections resulted in an even more reduced dataset for transfer. 
Though a total of 82711 SNPs were still identified, SNPs were contained in small 
ROIs. Most smaller ROIs were less than 1000 voxels and when their voxels were 
collapsed held between 0 and a few hundred possibly significant SNPs out of the full 
100000. between the ROI with the most amount of potential significant SNPs (51% of 
the total) for follow up included the bilateral superior frontal gyrus, which also made 
up about 9% of the image.  

Separating the above-mentioned regions into their respective L and R 
hemispheres  (84 total, not listed here for brevity) resulted in a drastically reduced 
SNP set of only 73% of the total (73250 of the 100000) for the full image. However, 
once again, as certain SNPs were only significant in certain regions, the transfer of 
their information from non-significant voxels is not necessary, further reducing the 
data transfer to less than half of the data generated. The superior frontal gyrus again 
held the most number of possible SNPs, with 18528 in the left hemisphere and 22389 
in the right. Clearly separating this region into L and R already reduced the total 
number of SNPs by approximately 10% of the total, and 20% of those identified for 
the region itself. Figure 3 shows a plot of the number of possibly significant SNPs as 
a function of ROI size when the ROI is collapsed to the most extreme statistic. 
Clearly as the number of ROIs increases, the data transfer in the first step also 
increases, but numbers are orders of magnitude less than if the images were 
transferred on a voxel by voxel level. 



4   Discussion 

Here we showed how to extend large-scale meta-analytic genetic association studies 
to image-wide analyses, by including steps to pool data across templates and make 
inter-site transfer of data more efficient. A distributed parallel computation can be 
highly beneficial as cohorts increase in size and add to a study or as new cohorts join 
an analysis. Due to the high levels of computation, is also not practical to re-run 
analyses at every site, so our approach makes use of common analyses many cohorts 
have already performed on structural MRI scans to make volume measurements, 
leading to a harmonized protocol for voxelwise association studies. While previous 
voxel-level meta-analyses have been performed, they involve pooling data from 
published results, which may only highlight the association at specific points in 
particular populations, and the mapping between regions and the summary statistics 
are unknown [9]. Using simulated genetic markers, we show our technique can 
maintain full structure-level volume associations (i.e., effects on hippocampal 
volume) when mapping out voxel-level associations, not only in a single cohort, but 
when data is pooled across a diverse set of cohorts.  
 In our analysis, we generated 100,000 data points to represent genomic 
markers with varying allelic frequencies. Here, all SNPs were generated 
independently of the others; therefore we are not evaluating any effect of linkage seen 
in standard GWAS. An exhaustive search of all SNPs and voxels may be avoidable by 
using dimensionality reduction methods to both the image and genome. Reduced rank 
regression, parallel ICA, canonical covariates analysis, and nonlinear machine 
learning approaches have all been proposed to fit sets of genetic predictors to imaging 
data. SNP set selection methods, annotation methods, and Bayesian priors have all 
been proposed to prioritize sets of SNPs in models rather than search them in a bias-
free way. However, at the time of writing, reproducible associations have been hard to 
identify with these methods, while volumetric associations have been reproduced 
across 50 cohorts using univariate association testing [2]. Hopefully, the inefficiencies 
in these standard univariate GWAS approaches will be overcome in the future.  
 Our work here shows however a method applicable to any voxelwise or 
vertexwise GWAS that is to be extended to a meta analysis. Rather than transferring 
all data, a multi-stage process can be conducted to break down the image into regions 
of interest, find the most significant measures for each SNP at those locations, and 
determine whether they would reach global significance in the meta analysis. Only if 
so, then more information would be requested. This allows for a significant reduction 
in data transfer between sites as well as expedited meta-analysis that would not need 
to read hundreds of TB of text files and store them in memory simultaneously. 
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 Table 1 describes the imaging and demographic data from each cohort. Note QTIM and 
HCP are family based studies, yet only one person per family was included in this study. 

 ADNI1 ADNI2 BIG HCP IMAGEN QTIM RSS 
Scanner GE, 

Siemens 
Philips, 

GE Philips GE GE, 
Siemens 
Philips, 

Siemens 
Brunker 

GE 

Field 
Strength 

1.5T 3T 1.5 and 3 T  3T 3T 4T 1.5T 

Location US multi-
site 

US multi-
site 

Nijmegen, 
NL 

Saint Louis, 
USA 

EU, 
multisite 

Brisbane, 
AUS 

Rotterdam
, NL 

Voxelsize 
(mm3) 

1.25×1.25×
1.2  
 

1.25×1.25
×1.2 
 

1 x1x1 0.7x0.7x0.7  1.1×1.1×1.1 0.9×0.9× 
0.9  

1x1x1.6  

N 837 815 62 207 80 590 64 

Age 75+/- 6.6 
(60-89) 

72.8+/-
6.6(48-90) 

21.5+/- 1.7 
(18-25) 

28.7+/-
3.5 (22 – 35) 

14 +/-0.4 22.9+/- 2.8  
(18-30) 

67.49 +/- 
11.40 

 
 

Figure 3 Plot showing the number of 
potentially significant SNPs meta analyzed in 
collapse ROIs of a given size. The ~1400 voxel 
ROIs in the cerebellar region do not follow a 
similar trend as other brain regions. 



 
Figure 1 Flow diagram of template creation and registration. T1-weighted images run 

through common software, Freesurfer, and evaluated to have good quality cortical and 
subcortical parcellations were used along with the Freesurfer outputs to drive multi-channel 
registrations to a cohort-specific template. The multiple channels were used to reduce 
variability between cohorts to create a minimal deformation template (MDT) from 4 datasets. 
All associations are performed in cohort-specific space and the transformation from cohort to 
template space was applied to the resulting statistical maps for meta-analysis. 

  
Figure 2: a) A SNP with MAF = 0.1 was simulated to be marginally (z=1.96) associated 

with average bilateral thalamic volume in a single cohort (after removing ICV). The effect of 
maintaining specificity to the thalami was compared between multiple templates. No method 
produced voxelwise significant maps, however, evaluating the uncorrected association results 
of the methods shows greater thalamic effects in the multi-channel method. b) A SNP with 
MAF=0.3 was generated for each of 7 cohorts, to have z=min(N/10,5) such that the 
significance was related to cohort size, yet was not excessive (|z| <5). Beta and SE maps for all 
cohorts were mapped to template space, and voxelwise meta-analysis revealed associations 
localized to both hippocampi.  
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