ENIGMA-EPILEPSY

A coordinated case-control analysis of 3,876 individuals at 21 sites worldwide

CHRISTOPHER WHELAN, PHD
UNIVERSITY OF SOUTHERN CALIFORNIA
EPILEPSY

“A history of deities and demons, of spirits and curses... thus a history of human suffering and medical ignorance.”

- Donald F. Weaver
MRI in epilepsy: Unanswered questions

Temporal lobe epilepsy (MTLE)...
- What is the extent of extrahippocampal atrophy, associated with mesial temporal sclerosis (MTS)?
- Are abnormalities more pronounced in left vs. right MTLE?

Genetic generalized epilepsy (GGE)
- Which brain regions are affected? Thalamo-cortical circuitry?¹

MRI in epilepsy: Unanswered questions

Small, cross-sectional neuroimaging studies are underpowered to detect subtle effects, and may over-inflrate other effects.
The epilepsy working group of the Enhancing Neuro Imaging Genetics through Meta-Analysis Consortium

ENIGMA

- 21 research centers
- 14 countries
- 50+ scientists

ENIGMA Epilepsy Group: Formed March 2015 by Royal Society, London International League Against Epilepsy

ENIGMA is a global neuroimaging research organization with 49 research centers from 14 countries and 250 scientists. It focuses on complex epilepsies, with 3,876 MRI scans from various sites around the world.

ENIGMA has led to significant breakthroughs in understanding epileptic conditions and advancing therapeutic options.

ENIGMA is an ongoing collaborative effort that aims to advance our understanding of epilepsy through integration of neuroimaging and genomics data.
Phenotypes:
- MTLE with left MTS • N = 415
- MTLE with right MTS • N = 339
- GGE • N = 367
- ‘All epilepsies’ • N = 2,149
- Healthy controls • N = 1,727

Inclusion criteria:
- Aged 18-55 years
- No strokes, infarcts, tumors
- No neurosurgery
- No neurological co-morbidities, or progressive syndromes (e.g. FCDs, PMEs)
Methods • Overview

Run post-processing on MRI data
(Freesurfer v5.3.0)

Perform image QC
(standardized ENIGMA QA guidelines)

Conduct linear regression
(R, lm; covariates = AGE, SEX, ICV)

Upload [anon.] summary statistics to ENIGMA server
cranium.ini.usc.edu

Run random-effects meta-analysis
(R, metafor, p<1.84x10^-4)

For protocols, see: http://enigma.ini.usc.edu/protocols/
Subcortical results

(A) ALL EPILEPSIES:
- Bilateral thalamus ($d = -0.348; P = 1.33 \times 10^{-6}$)
- Bilateral hippocampi ($d = -0.336; P < 3.04 \times 10^{-7}$)
- Right pallidum ($d = -0.316; P = 3.12 \times 10^{-9}$)
- Bilateral lat. ventricles ($d = 0.268; P = 2.14 \times 10^{-12}$)

(B) TLE-MTS-L:
- Ipsilateral hippocampus ($d = -0.73; P = 1.35 \times 10^{-19}$)
- Bilateral thalamus ($d \leq -0.462; P = 8.12 \times 10^{-5}$)
- Contralateral pallidum ($d = -0.45; P = 5.84 \times 10^{-7}$)
- Ipsilateral putamen ($d = -0.385; P = 1.07 \times 10^{-6}$)
- Bilateral lat. ventricles ($d \geq 0.36; P = 8.95 \times 10^{-5}$)

(C) TLE-MTS-R:
- Ipsilateral hippocampus ($d = -1.906; P = 6.36 \times 10^{-37}$)
- Ipsilateral thalamus ($d = -0.727; P = 1.60 \times 10^{-12}$)
- Ipsilateral putamen ($d = -0.47; P = 4.94 \times 10^{-4}$)
- Ipsilateral pallidum ($d = -0.451; P = 3.96 \times 10^{-7}$)
- Bilateral lat. ventricles ($d \geq 0.39; P = 1.52 \times 10^{-5}$)

(D) GGE:
- Right thalamus ($d = -0.403; P = 3.62 \times 10^{-6}$)
- Right pallidum ($d = -0.35; P = 3.37 \times 10^{-4}$)
Cortical results

(A) ALL EPILEPSIES:

BILATERAL changes in:

- precentral gyri (d≤0.384; P≤1.82x10^{-18}),
- caudal middle frontal gyri (d≤0.307; P≤2.09x10^{-9}),
- paracentral gyri (d≤0.311; P≤2.05x10^{-6}),
- pars triangularis (d≤0.192; P≤9.87x10^{-5}).

UNILATERAL changes in:

- right cuneus (d=-0.204; P=9.68x10^{-8}),
- right pars opercularis (d=-0.177; P=6.48x10^{-7}),
- right precuneus (d=-0.275; P=2.7x10^{-5}),
- left entorhinal gyrus (d=0.264; P=2.04x10^{-5}).

(B) TLE-MTS-L:

BILATERAL changes in:

- caudal middle frontal gyri (d≤0.403; P≤7.07x10^{-9}),
- paracentral gyri (d≤0.378; P≤1.61x10^{-5}),
- precentral gyri (d≤0.466; P≤1.44x10^{-9}),
- superior frontal gyri (d≤0.365; P≤3.33x10^{-6}).

UNILATERAL changes in:

- ipsi. entorhinal cortex (d=0.445; P=7.35x10^{-10}),
- ipsi. fusiform gyrus (d=0.359; P=2.19x10^{-7}),
- ipsi. temporal pole (d=0.315; P=3.13x10^{-6}),
- contra precuneus (d=0.472; P=5.16x10^{-6}),
- contra pars triangularis (d=0.285; P=2.16x10^{-6}).

(C) TLE-MTS-R:

BILATERAL changes in:

- paracentral gyri (d=0.421; P≤7.67x10^{-7}),
- precentral gyri (d=0.415; P≤4.31x10^{-6}),

UNILATERAL changes in:

- ipsi. lateral occipital gyrus (d=0.366; P=1.79x10^{-4}),
- ipsi. pars opercularis (d=0.271; P=1.5x10^{-4}),
- contra. superior frontal gyrus (d=0.355; P=1.5x10^{-4}),
- contra. transverse temporal gyrus (d=0.312; P=2.15x10^{-5}).

(D) GGE:

BILATERAL changes in:

- precentral gyri (d=0.342; P≤1.75x10^{-6})

UNILATERAL changes in:

- ipsi. lateral occipital gyrus (d=0.366; P=1.79x10^{-4}),
- ipsi. pars opercularis (d=0.271; P=1.5x10^{-4}),
- contra. superior frontal gyrus (d=0.355; P=1.5x10^{-4}),
- contra. transverse temporal gyrus (d=0.312; P=2.15x10^{-5}).
Results • Effects of duration, age at onset, age*Dx

Duration effects...
• Observed in ‘all epilepsies’ and MTLE-MTS-R groups.
 • *Precentral gyri, thalamus, hippocampus, pars triangularis, superior frontal gyri.*

Age at onset effects...
• Observed in ‘all epilepsies’ group only.
 • *Superior frontal gyri, pars triangularis, transverse temporal gyrus.*

Age*Diagnosis effects...
• None observed after correction for multiple comparisons.
Discussion

- Specific functional implications cannot be inferred from GM changes alone.
- How, then, can our findings help?
 - Confirm / refute prior reports from smaller studies
 - ROI prioritization, e.g. neuropathology • animal models • gene expression

- Many other ENIGMA-Epilepsy groups are active, or will soon form...
 - ENIGMA-Epilepsy DTI (ongoing)
 - ENIGMA-Epilepsy Subcortical Shape
 - ENIGMA-Epilepsy Hippocampal Subfields
 - Sulcal/gyrification measures
 - Expression studies, in collab w/ UKBEC
 - Eventual imaging genetics in epilepsy
CONCLUSIONS

- Largest neuroimaging study of epilepsy to date.
- Shows profound, robust, and consistent effects across and within syndromes.
- Must be wary of limitations: Cross-sectional design, omission of certain covariates.
- An open, collaborative network aiming to identify structural biomarkers.

ENIGMA-EPILEPSY
THANK YOU!

Kelly Leyden
Min Liu
Richard Q Loi
Mario Mascalchi
Carrie McDonald
Stefano Melep
Laura Mirandola
Marcia Morita
Jillian Naylor
Terence O’Brien
Jose C Pariente
Yifan Ren
Mark Richardson
Andrea Ruggeri
Christian Rummel
Taavi Saavalainen
Margitta Seeck
Mira Semmelroch
Maria S Severino
Saul Alhusaini
Núria Bargalló
Emanuele Bartolini
Andrea Bernasconi
Boris Bernhardt
Karen Blackmon
Anna Calvo
Sarah Carr
Gianpiero L Cavalleri
Fernando Cendes
Antonio Cerasa
Andrea Cherubini
Luis Concha
Mark J Cook
Raul Cruces
Chantal Depondat
Patricia Desmond
Orrin Devinsky
Niels Föcke
Sonya Foley
Antonio Gambelli
Renzo Guerini
Khalid Hamandi
Derrek P Hibar
Graeme Jackson
Neda Jahanshad
Reetta Kälviäinen
Simon S Keller
Raviteja Kotikalapudi
Patrick Kwan
Angelo Labate
Neda Ladbon-Bernasconi
Soenke Langner
Matteo Lenge
NIH Big Data to Knowledge (BD2K)

ENIGMA
Join at enigma.usc.edu