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Abstract.  
Microstructural measures from diffusion MRI have been used for classification 
purposes in neurodegenerative and psychiatric conditions. Novel diffusion 
reconstruction models can lead to better and more accurate measures of tissue 
properties: each measure provides different information on white matter 
microstructure in the brain, revealing different signs of disease. The diversity of 
computable measures makes it necessary to develop novel classification 
procedures to capture all of the available information from each measure. Here 
we introduce a multichannel regularized logistic regression algorithm that 
classifies individuals’ diagnostic status based on several microstructural 
measures, derived from their diffusion MRI scans. With the aid of a TV-L1 
prior, which ensures sparsity in the classification model, the resulting linear 
models point to the most classifying brain regions for each of the diffusion 
MRI measures, giving the method additional descriptive power. We apply our 
regularized regression approach to classify Alzheimer’s disease patients and 
healthy controls in the ADNI dataset, based on their diffusion MRI data. 
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1 Introduction 
 

Diffusion MRI (dMRI) reveals a number of properties of white matter (WM) 
microstructure. Its sensitivity to water diffusion in living tissue allows us to compute 
numerous summary measures that relate to neural fiber integrity and architecture in 
the brain. Based on certain assumptions, each can quantify different aspects of WM 
microstructure. One of the most basic measures - fractional anisotropy (FA) - is based 



on the diffusion tensor model (DTI) [1], and continues to be popular despite its known 
limitations, which include its ambiguity at fiber crossings. Other models overcome 
some limitations of DTI, including multi-tensor models, such as the tensor 
distribution function (TDF) [2], q-ball imaging and the orientation distribution 
function (ODF) [3], constrained spherical deconvolution [4], neurite orientation 
dispersion and density imaging (NODDI) [5], and freewater index (FW) [13] among 
others. Each model leads to its own set of scalar microstructural measures and many 
offer a richer understanding of white matter microstructure than FA does. Which 
combination of measures best characterizes brain disease remains an open question, 
and depends on the disease examined, and the spectral and angular resolution of the 
available data. This question may have a different answer in different parts of the 
brain depending on the underlying changing pathology (e.g., pathological changes in 
gray/white matter interfaces or more central white matter tracts). 

At the time of writing, around 20 microstructural measures have been proposed 
for single-shell dMRI. Microstructural measures derived from new dMRI models may 
carry even more information on WM microstructure including the geometry of 
diffusion anisotropy, diffusivity, complexity, estimated number of distinguishable 
fiber compartments, number of crossing fibers and neurite dispersion. Combining 
these in a classification task is challenging, and requires proper regularization. Here, 
we use a Total Variation - Lasso or “TV-L1” regularization as a prior term in a 
logistic regression framework. The channel-wise TV term leads to linear models that 
are approximately spatially piecewise constant, giving the weight maps descriptive 
power to suggest both the regions and measures that are helpful in a disease 
classification task, while considering multiple measures together. We build on prior 
work with TV-L1 regularizers in neuroimaging; they have been used successfully for 
fMRI decoding and in electrophysiological studies [6].  

The classification task examined here is to discriminate Alzheimer's patients 
(AD) and healthy aging controls (NC), based on their dMRI data, by merging 
information from a range of complementary indices. A discriminative model in this 
setting may be useful as a disease biomarker, for drug trial enrichment and to help 
identify those most likely to decline in the future. In view of this, many studies 
describe WM microstructural differences between AD and NC [7], and some exploit 
WM metrics for classification [8-10]. By combining several measures in a 
classification task, we hope to generate a biomarker of disease that is “greater than the 
sum of its parts.” 

 
 
2 Methods 
 
2.1 Data Acquisition and Preprocessing 
 
Baseline MRI, dMRI, and clinical data were downloaded from the ADNI database 
(adni.loni.usc.edu). Here we performed an analysis of dMRI data from 102 
participants: 53 healthy controls (CN; mean age: 72.4 +/- 6.0 yrs.; 24 M/29 F), and 49 
AD patients (mean age: 74.9 +/- 8.7 yrs.; 29 M/20 F).  

All subjects underwent whole-brain MRI scanning on 3T GE Medical Systems 
scanners at 14 acquisition sites across North America. Anatomical T1-weighted 



SPGR (spoiled gradient echo) sequences (256x256 matrix; voxel size = 1.2x1.0x1.0 
mm3; TI=400 ms; TR = 6.98 ms; TE = 2.85 ms; flip angle=11°), and dMRI (128x128 
matrix; voxel size: 2.7x2.7x2.7 mm3; TR=9000ms; scan time = 9 min were acquired; 
46 separate images were acquired for each dMRI scan: 5 images with no diffusion 
sensitization (b0 images) and 41 diffusion-weighted images (DWI; b=1000 s/mm²). 

Images were preprocessed as in [7]. To summarize, raw dMRI images were 
corrected for motion and eddy current distortions, and T1-weighted images underwent 
inhomogeneity normalization. Extra-cerebral tissue was removed from both scan 
types. Each T1-weighted anatomical image was linearly aligned to a standard brain 
template (the down-sampled Colin27 [11]): 110x110x110, with 2-mm isotropic 
voxels). The diffusion images were linearly and then elastically registered [12] to 
their respective T1-weighted structural scans to correct for echo-planar imaging 
induced susceptibility artifacts.  The gradient tables were corrected to account for the 
linear registration of the DWI images to the structural T1-weighted scan. 
 
2.2 DMRI Reconstruction Models, Scalar Maps, and Spatial Normalization 
 
For each subject, dMRI microstructural measures were computed from four different 
reconstruction models: DTI, TDF, NODDI and FW. Five measures were extracted 
from these models: FA and mean diffusivity (MD) from DTI, fractional anisotropy 
from TDF (FA-TDF), the orientation dispersion index (OD) from NODDI and the 
free water index (FW). We will not describe the well known DTI based FA and MD 
here, but will briefly describe the other three models: 
 
The Tensor Distribution Function (TDF) represents the diffusion profile as a 
probabilistic mixture of tensors [2] allowing the reconstruction of multiple underlying 
fibers per voxel, together with a distribution of weights. We compute the voxel-wise 
TDF as the probability distribution function 𝑃(𝐃) defined on all feasible 3D Gaussian 
diffusion processes in tensor space D: 
 

𝑆 𝖖 = 𝑃 𝐃 𝑒 !!𝖖!𝐃𝐪 𝑑𝐃     (1), 
 
where S is the measured intensity signal, 𝖖 = 𝑟𝛿𝐺, where 𝑟,  𝛿, and 𝐺 are the 
gyromagnetic ratio, the duration of the diffusion sensitization, and the applied 
magnetic gradient vector, respectively. The number of detected peaks is estimated by 
examining the local maxima of the tensor orientation distribution (TOD), defined in 
the unit sphere along directions θ : 

 
TOD 𝜃 = 𝑃(𝐃 𝜃, 𝜆 )𝑑𝜆!  (2), 

                              
where 𝜆 are the eigenvalues. The TDF-averaged eigenvalues of each fiber were 
calculated by computing the expected values along the principal direction of the fiber. 
From these eigenvalues a scalar TDF anisotropy (FA-TDF) is calculated as an 
extension of the standard FA formula: 
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The Neurite Orientation Dispersion and Density Imaging (NODDI) is a composite 
model that takes into account three compartments that affect water diffusion in the 
brain: the intracellular compartment, the extracellular compartment, and the 
cerebrospinal fluid (CSF) [5]. The intracellular compartment is modeled as cylinders 
with a radius of zero that represent the axons and dendrites of the brain tissue, which 
are jointly called neurites. The ODF of the intracellular compartment is modeled as a 
Watson distribution that can capture the dispersion orientation of coherent central 
white matter bundles as well as the incoherent neurites of the grey matter. The 
normalized intracellular compartment 𝐴!"  is modeled as: 
 

𝐴!" = 𝑓 𝖓 𝑒!!!∥(𝖖∙𝖓)!𝑑𝖓
𝕊!

 

 
Here, � represents the gradient directions, b the b-value of the diffusion weighting, � 
are the orientations of the cylinders with parallel diffusivity d|| along which the signal 
is attenuated and 𝑓(𝖓) is the Watson distribution, which has two parameters (𝝁, 𝒦) 
and is defined as: 
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Here, the distribution tends to be symmetric around the mean orientation 𝝁, and M is 
Kummer’s confluent hypergeometric function. 𝒦 is called the concentration 
parameter. For 𝒦 > 0, as 𝒦 increases the density along 𝝁 tends to concentrate. Once 
𝒦 is estimated the orientation dispersion index (OD) is calculated as: 
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1
𝜋
arctan 

1
𝒦

 
 
OD goes from 0 to 1, the higher the value the more dispersed the neurites in a 
particular voxel. In our analyses below we used only the OD maps. The intracellular 
and extracellular volume fractions as well as the isotropic CSF volume fraction are 
not taken into account in our analyses. Zhang et al. demonstrated that the latter 
measures require more than one shell in order to be reliable, whereas the OD can be 
computed reliably with single shell data even with standard clinical acquisition b-
values of b=1000s/mm2 [5]. OD may be more informative than DTI, in areas with less 
organized patterns such as areas of multiple fiber crossings as well as towards the 
gray/white matter boundaries. 



 
Free-Water Imaging (FW) estimates the contribution of freely diffusing water 
molecules to the diffusion signal with a bi-tensor model [13]. The first component of 
the model is the so-called tissue compartment that represents either grey matter or a 
bundle of the white matter. The second component reflects the free-water 
compartment, which is said to be proportional to the amount of CSF contamination, 
especially in areas of the white matter that are close to the ventricles. The free-water 
component is also expected to increase with neuroinflammation due to edema. The 
full model is defined as: 
 

𝑆𝖖 𝐃, 𝑓 = 𝑓𝑒 !!𝖖!𝐃𝖖 + 1 − 𝑓 𝑒 !!!!       (4), 
 
where S is the attenuated signal, 𝖖 are the applied diffusion gradient directions, 𝑏 is 
the b-value of the diffusion weighting, D is the diffusion tensor and f is the fractional 
volume of the tissue compartment 0 < 𝑓 ≤ 1 . The second term is a fully isotropic 
tensor, where 𝑑! is the bulk diffusivity of water, which is constant at body 
temperature (3×10-3 mm2/s).  
 
Voxel-wise maps of all five measures - FA, MD, FA-TDF, OD, and FW - were 
created for all 102 subjects; all subjects’ maps were spatially normalized to a custom 
ADNI- derived minimal deformation template (MDT). Template creation and spatial 
normalization was performed according to previously published voxelwise ADNI-
DTI analyses [7]. 
 
2.3 Regularized Logistic Regression Classification  
 
In general, the linear logistic regression model has the following classification 
function 

𝑦 = 𝑓 𝐗,𝒘, 𝑏 =  𝐹 𝐗𝒘 + 𝑏       (3) 
 
Here 𝐗 ∈ ℜ!×!, n is the number of samples (subjects) and p is the number of 
features. As all the computations were performed within the MDT mask (193,586 
~200,000 voxels), p is the number of voxels times the number of diffusion measures 
(five in this case).  The parameters to be estimated are w and b, where w ∈ ℜ!	is a p-
dimensional vector, 𝑏 ∈ ℜ! is the intercept and 𝑦 ∈  −1,1  is the class label, in our 
case, to be the subject diagnosis. The regularized cost to be optimized is:  
 

𝒘 = argmin𝓛 𝑦,𝐹 𝐗𝒘 + 𝑏 + 𝜆𝕵(𝒘), 𝜆 ≥ 0     (4) 
   

where 𝓛 is the logistic loss function,  𝕵(𝒘) is the regularization term and 𝜆 is the 
Lagrange multiplier. The intercept 𝑏 is not regularized, and only depends on the loss 
function. We will simplify 𝓛 𝑦,𝐹 𝐗𝒘 + 𝑏   to 𝓛 𝒘 . In our case, the standard TV-
L1 norm cost becomes:  
 

𝕵 𝒘 =  (1 − 𝛼) 𝒘 ! + 𝛼 TV 𝒘𝒋
!!
!!! , TV 𝑦 = ∇𝑦 ,   (5) 

 



where the first term is the LASSO or L1 cost, TV is the Total Variation penalty [6], 
𝒘𝒋  is the weight map of a microstructural measure 𝑗, 𝑁! (=5 here) is the number of 
measures used and 𝛼 is a constant that sets the desired tradeoff between L1 and TV 
terms. The L1 penalty encourages sparsity in the model, by setting most coefficients 
to zero. This penalty function suffers from some limitations when there is a large 
number of parameters p to fit, and few observations n, as LASSO selects at most n 
variables before it saturates. Further, if there is a group of highly correlated variables, 
then LASSO tends to select one variable from a group and ignores the others. On the 
other hand, the TV is defined as the L1 norm of the image gradient, which allows for 
sharp edges, encouraging the recovery of a smooth, piecewise constant weights map. 
This in turn allows us to interpret the weight maps as they may highlight clusters that 
can resemble anatomical regions.  

We used the FISTA procedure [6] to find 𝒘 (the estimated value for w). As 
the L1 terms are not smooth, a naïve gradient descent may not always converge to a 
good minimum. For this convex optimization, smooth and non-smooth terms are 
considered separately. The logistic loss and the logistic gradient are the smooth terms: 
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We used an 8-fold nested cross-validation to tune the parameters 𝛼 and 𝜆.  
 
 
3 Results 

 
We were able to classify individuals into diagnostic groups (AD vs. NC) with an 
accuracy of 76.2%. We ran a parallel test by using only one measure (FA-DTI) and 
the prediction accuracy was 50%. As expected, the resulting maps of significant 
predictors showed cohesive regional patches of stable coefficients, a property that is 
favored by the TV regularization term. Figure 1 shows the resulting map for each of 
the five measures.  

FW and MD showed similar predictive properties, with large regions of 
negative coefficients in the frontal lobes (both hemispheres). FA-DTI and FA-TDF 
also showed a similar pattern, but FA-TDF showed larger and more cohesive regions 
in the frontal white matter, especially in areas with fiber crossings. OD showed some 
similarities with the MD map although the regions with the larger coefficients (both 
positive and negative) tended to be smaller and more widespread. Many of these 
observations are in line with what is expected for each measure. The direction of the 
coefficients is also important to note. It is expected that the anisotropy of the white 
matter tends to decrease in AD compared to healthy aging controls, but MD, FW and 
OD on the other hand tend to increase with white matter disruption.  
 



 
Figure 1. Regularized maps of useful diagnostic predictors, based on measures computed 
from diffusion MRI. A. FA-DTI B. FA-TDF C. MD-DTI D. OD E. FW. Color bars show the 

value of the coefficients, from negative (blue) to positive (red), with zero in green.  
 
4 Discussion 
 
In this article, we evaluated the utility of the TV-L1 prior logistic regression to assess 
the ability of multiple dMRI reconstruction methods to simultaneously distinguish 
alterations in WM microstructure between people with AD and matched healthy 
controls. We computed five dMRI derived microstructural measures from four 
different reconstruction models that were used together in a regularized classification 
framework and we were able to successfully classify AD from healthy controls and to 
derive spatially coherent discrimination patterns across the entire brain for each 
measure.  

AD pathology includes disturbances in the brain's WM pathways including 
loss of axons, myelin sheaths, and oligodendroglial cells, which may not all be 
detected by using DTI based descriptors alone. Machine learning for classification 
based on dMRI features has been focused mainly on DTI derived measures; although 
HARDI derived measures have also been explored [19,20]. Volumetric measures, 
including hippocampal volume, gray matter volume from voxel-based morphometry, 
and cortical thickness [14-16,18], have effectively classified AD patients, but few 
studies have used dMRI-derived biomarkers for classification purposes. Most of these 
studies have used DTI based measures: several used voxel-wise features from DTI 
maps, using methods such as Pearson correlation and ReliefF for feature reduction [8-
10], reporting classification accuracies of >90%. In [17], tractography-based 
connectivity metrics based on fiber count, FA-DTI, and diffusivity were used for 
SVM classification, reporting an accuracy of 88%. Clearly, these accuracies depend 



on the problem and dataset used, and are not directly comparable with one another. 
Spatial and anatomical regularization for classification purposes have also been tested 
on AD discrimination against controls by Cuingnet et al. [18]. Here they achieved 
improved classification accuracies by using this type of regularization on cortical 
features and producing discriminatory parcellated maps of the cortex highlighting the 
brain regions traditionally compromised in AD.  

Here we evaluated 102 subjects and were able to reach a relatively high 
classification accuracy for a white matter study of AD. Although our approach did not 
necessarily “beat” prior classification results, our goal was to compare the relative 
utility of multiple metrics for classification, which leads to some insight on how the 
disease may affect different fiber properties. Moreover, it was important to see if 
these measures might complement and add to the information provided by DTI 
measures -- particularly in regions outside the coherent WM. Many dMRI measures 
are correlated with each other to some extent, but each captures the microstructure 
slightly differently, and at the various spatial locations, there may be greater 
sensitivity to detecting subtle changes with one measure versus another.  

In conclusion, different reconstruction models and their respective scalar 
descriptors provide distinct micro-anatomical features, which differ in classification 
value by brain region. Together these estimates may improve brain-wide classification 
and may overcome the need to compute localized statistically determined regions of 
interest, and allow us to observe microstructural changes in the entirety of the brain. 
We made use of the main functionality of the TV prior, namely its denoising and 
smoothing capabilities across the image. This is essential in this context since single 
voxels prove to be very noisy and neighboring anatomy is presumably similar. Future 
work should compare other classification methods and improve estimates by 
incorporating tissue volume differences. We will also test if dMRI metrics can 
contribute to leading classification approaches based on biomarkers such as 
hippocampal volume, amyloid deposition, and tensor-based morphometry. 
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